M.TECH. (FULL TIME) COMPUTER SCIENCE AND ENGINEERING CURRICULUM & SYLLABUS

2018-19

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING FACULTY OF ENGINEERING AND TECHNOLOGY SRM INSTITUTE OF SCIENCE AND TECHNOLOGY SRM NAGAR, KATTANKULATHUR – 603 203

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING M.Tech-COMPUTER SCIENCE AND ENGINEERING CURRICULUM 2018-19

COUR	SE					
CODE		COURSE NAME	L	Т	Р	С
		SEMESTER I				
CS2001	Data	Structures and Algorithms	3	0	2	4
CS2002	Paral	el Computer Architecture	4	0	0	4
CS2003	Objec	t Oriented Software Engineering	4	0	0	4
CAC2001	Caree	er Advancement Course For Engineers - I	1	0	1	1
	Progr	am Elective- I	3	0	0	3
	Progr	am Elective- II	3	0	0	3
		TOTAL	16	0	3	19
		Total Contact Hours: 19				
000004		SEMESTER II		0	_	
		Base Technology	4	0	0	4
		outer Networks and Management	4	0	0	4
		m Programming	3	0	2	4
CAC2002		er Advancement Course For Engineers - II	3	0	0	3
		am Elective- III	3	•	ů	3
	Plogi	am Elective- IV TOTAL	ں 18	0	0 3	ა 19
		Total Contact Hours: 21	10	U	3	17
		SEMESTER III				
	Progr	am Elective- V	3	0	0	3
	×	am Elective- VI	3	0	0	3
CAC2003	Caree	er Advancement Course For Engineers - III	1	0	1	1
CS2047	Semi	nar	0	0	1	1
CS2049	Proje	ct Phase I	0	0	12	6
		TOTAL	7	0	14	14
		Total Contact Hours: 21				
	-	SEMESTER IV			1	_
CS2050	Proj	ect Phase II	0	0	32	16
		Semester I-III	-		1	
		portive course purse of 3 credits in I or II or III sem.)	3	0	0	3

	Interdisciplinary Elective	2	0	0	2	
	(1course of 3 credits in I or II or III sem.)		0	0	3	
CAC2001	Career Advancement Course For Engineers - I	1	0	1	1	
CAC2002	Career Advancement Course For Engineers - II	1	0	1	1	
CAC2003	Career Advancement Course For Engineers - III	1	0	1	1	
	TOTAL	9	0	3	9	
	Total Contact Hours: 12					
	TOTAL CREDITS			74		

Total credits to be earned for the award of M.Tech degree - 74 credits

PROGRAM ELECTIVES

Course		Ι.	_		
Code	Name of the course	L	Т	Ρ	С
CS2101	Component Based System Design	3	0	0	3
CS2102	Bio Inspired Computing	3	0	0	3
CS2103	Distributed Operating Systems	3	0	0	3
CS2104	Digital Image Processing	3	0	0	3
CS2105	Human Computer Interaction	3	0	0	3
CS2106	Wireless Networks	3	0	0	3
CS2107	TCP / IP Technology	3	0	0	3
CS2108	Pattern Recognition Techniques	3	0	0	3
CS2109	Data Warehousing and its Applications	3	0	0	3
CS2110	Network Security & Cryptography	3	0	0	3
CS2111	Grid Computing	3	0	0	3
CS2112	Natural Language Understanding	3	0	0	3
CS2113	Data Mining Concepts and Techniques	3	0	0	3
CS2114	Wireless Sensor Networks and Programming	3	0	0	3
CS2115	Server Oriented Architecture	3	0	0	3
CS2116	Cloud Computing	3	0	0	3
CS2117	Trusted Computing	3	0	0	3

SUPPORTIVE COURSES

Course Code	Name of the course	L	Т	Р	С
MA2013	Mathematical Foundations of Computer Science	3	0	0	3
MA2010	Graph Theory and Optimization Techniques	3	0	0	3
MA2011	Stochastic Processes and Queueing Theory	3	0	0	3

NOTE:

Students have to register for the courses as per the following guidelines:

SI.				Credits		
_	Category			III	IV	Category
No.		Semester	Semester	Semester	Semester	total
1	Core courses	12 (3	12 (3 12 (3			24
		courses)	courses)			
2	Program Elective	18 (in	I to III seme	esters)		18
	courses					
	Interdisciplinary	•	course to be			3
	elective courses	Sem	nester I or II	or III)		
	(any one program					
	elective from other					
	programs)					
3	Supportive		course to be			3
	courses -	Sem	nester I or II	or III)		
	mandatory					
4	Seminar			1		1
6	Project work			06	16	22
			Total			71

Legend:

- L Number of lecture hours per week
- T Number of tutorial hours per week
- **P** Number of practical hours per week **C** Number of credits for the course

SEMESTER I

		DATA STRUCTURES AND ALGORITHMS	L	Т	Р	С		
CS2001		Total Contact Hours - 75	3	0	2	4		
5	2001	Prerequisite						
		Nil						
PUR	POSE							
		e of this course is to impart knowledge on various li			nlinea	r		
data	structu	es, study their implementations and analyze their e	efficie	псу.				
INST	RUCTI	ONAL OBJECTIVES						
1.	To lea	rn about analyzing and designing algorithms to solve e asymptotic efficiency of an algorithm	a prob	lem a	nd leai	m to		
2.	To be and H	familiar with various data structure concepts like Stac ashing	ks, Qı	leues,	Linke	d List		
3.	To lea	Irn implementations of advanced Data structures a	nd so	ting a	gorith	ms		
4.	4. To learn advanced data structures such as balanced search trees, hash tables and priority queues							
5.								

UNIT I – INTRODUCTION

The Role of Algorithms in computing – Analyzing Algorithms – Designing Algorithms – Growth of functions – Asymptotic Notations – Divide and Conquer – Recurrences – Maximum subarray problem –Stressan's Method – Substitution method – Recurrence tree method – The Master method – Floors and Ceilings.

UNIT II – LISTS, STACKS, QUEUES AND HASHING

Abstract Data Types (ADTs) -The List ADT-The Stack ADT- The Queue ADT - Hashing: Hash Function - Separate Chaining - Open Addressing - Rehashing - Extendible hashing.

Implementation in C or C++: Operations (Create, Access, Insert and Delete) - Singly– linked List - Doubly–linked List - Circular–linked List - Operations on a Hash Table – Create, Insert, Find and Retrieve

(17 hours)

(10 hours)

- Gilles Brassard, Paul Bratlev, "Fundamentals of Algorithms", PHI Learning Pvt. 3. Ltd, 2011.
- Aaron M. Tanenbaum, YedidyahLangsam, Moshe J.Augenstein, "Datastructures 4. using C", Pearson Education, 2011.
- 5. Richard F. Gillberg, Behrouz A. Forouzan, "Data structures: A PseudocodeAppproach with C", Cengage Learning, Second Edition, 2009.
- 6. Kenneth A. Berman, Jerome L. Paul, "Algorithms", Cengage Learning, 2008.
- http://ocw.mit.edu/courses/electrical-engineering-and-computer science/6-7. 046j-introduction-to-algorithms.
- http://ocw.mit.edu/courses/electrical-engineering-and-computer-science / 6-8. 851-advanced-data-structures

CS2002 PARALLEL COMPUTER ARCHITECTURE	PARALLEL COMPUTER ARCHITECTURE	L	Т	Ρ	С
C32002	Total Contact Hours - 60	4	0	0	4

6

SRM-M.Tech.-CSE-2018

Sort-Heap Sort-Merge Sort-Quick Sort - Implementation in C or C++: Tree

Traversals - Inorder, Preorder and Postorder - Operations on Binary Search trees -Insert, Find, Delete and Traversals - Soring Techniques - Insertion Sort, Merge Sort and Ouick Sort.

Implementation of Trees - Tree Traversals with an application - Binary Trees -Binary Search Trees – AVL trees – Splay Trees–B Trees–Sorting: Insertion Sort–Shell

UNIT IV – GRAPH ALGORITHMS

UNIT III - TREES AND SORTING

Representations of Graphs – Topological sort – Shortest – Path Algorithms – Network Flow Problems - Minimum Spanning Tree - Applications of Depth - First-Search -NP - Completeness Implementation in C or C++: Graph Traversals - Breadth First Search - Depth First Search - Graph Processing Algorithms - Diikstra's Algorithm for minimum cost path - Kruskal's Algorithm for minimum spanning trees.

UNIT V – ALGORITHM DESIGN TECHNIQUES

Greedy Algorithms - Divide and Conguer - Dynamic Programming - Randomized algorithms -Backtracking Algorithms. Implementation in C or C++: Divide and Conquer – Knapsack Problem - Backtracking – 8-Queen's Problem.

REFERENCES

- Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", 2nd Edition, 1. Pearson Education, 2011.
- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, "Introduction 2. toAlgorithms", PHI Learning Pvt. Ltd., 2010.

(20 hours)

(17 hours)

(11 hours)

Prerequisite					
Nil					
POSE					
arn the advanced concepts of Computer Architecture					
RUCTIONAL OBJECTIVES					
To learn the parallel models and processors					
Pipelining and scalable architectures					
3. Memory organization					
To learn the multithreaded and data flow architecture					
	Nil POSE arn the advanced concepts of Computer Architecture RUCTIONAL OBJECTIVES To learn the parallel models and processors Pipelining and scalable architectures Memory organization	Nil POSE arn the advanced concepts of Computer Architecture RUCTIONAL OBJECTIVES To learn the parallel models and processors Pipelining and scalable architectures Memory organization	Nil Image: Computer Architecture POSE Image: Computer Architecture arn the advanced concepts of Computer Architecture Image: Computer Architecture RUCTIONAL OBJECTIVES Image: Computer Architecture To learn the parallel models and processors Image: Computer Architecture Pipelining and scalable architectures Image: Computer Architecture Memory organization Image: Computer Architecture	Nil Image: Computer Architecture POSE arm the advanced concepts of Computer Architecture RUCTIONAL OBJECTIVES To learn the parallel models and processors Pipelining and scalable architectures Image: Computer Architecture Architecture Memory organization Image: Computer Architecture Architecture	

UNIT I - INTRODUCTION TO PARALLEL PROCESSING (12 hours)

Basic concepts – types and level of parallelism - classification of parallel architecture – basic parallel techniques - shared memory multiprocessors – distributed memory multicomputer – parallel Random access machine – VLSI complexity model .

UNIT II - PROCESSORS AND MEMORY HIERARCHY (12 hours)

Advanced processor technology – Super scalar and vector processors – Memory hierarchy technology, virtual memory technology – cache memory organization – shared – memory organization.

UNIT III – PIPELINING AND SUPERSCALAR TECHNIQUES (12 hours)

Linear pipeline processors – Nonlinear pipeline processors – Instruction pipeline design – Arithmetic pipeline design – Superscalar pipeline design

UNIT IV – PARALLEL AND SCALABLE ARCHITECTURE (12hours)

Cache coherence and synchronization mechanisms – coherence problem – snoopy bus and directory based protocol - Vector processing principle Vector instruction types – vector access memory schemes - SIMD computer organization - Implementation models - CM2 – architecture latency hiding techniques

UNIT V – MULTITHREADED & DATA FLOW ARCHITECTURE (12 hours)

Principles of Multithreading – issues and solutions – multiple context processors -Scalable and Multithreaded architectures- Stanford Dash multiprocessor - KSR1 -Dataflow computer-static data flow computer -Dynamic data flow computer

REFERENCES

- 1. Kai Hwang, "Advanced Computer Architecture", Parallelism, Scalability, Programmability", McGraw Hill, 1993.
- 2. Hwang Briggs, "Computer Architecture and parallel processing", McGraw Hill, 1984.
- 3. Dezsosima, Terence Fountain ,Peter Karsuk , " Advanced Computer Architectures : A design space approach" , Addison Wesley, 1997.

		OBJECT ORIENTED SOFTWARE ENGINEERING	L	Т	Ρ	С		
CS	CS2003 Total Contact Hours - 60		4	0	0	4		
		Prerequisite						
		Nil						
PUR	PURPOSE							
To le	earn th	ne advanced software engineering principles a	nd m	ethod	ologie	s for		
effect	tive So	ftware tools and development						
INST	RUCTI	ONAL OBJECTIVES						
1.	To lear	n about software prototyping, analysis and design						
2.	2. To learn UML and its usage							
3.	3. To estimate and scheduling of objects							
4.	4. To implement and test an object.							

UNIT I - INTRODUCTION

(10 hours)

(12 hours)

Software Engineering Paradigms - Software Development process models - Project & Process - Project management – Process & Project metrics - Object Oriented concepts & Principles.

UNIT II - PLANNING & SCHEDULING

Software prototyping - Software project planning – Scope – Resources - Software Estimation - Empirical Estimation Models-Planning-Risk Management - Software Project Scheduling – Object Oriented Estimation & Scheduling.

UNIT III - ANALYSIS & DESIGN

Analysis Modeling - Data Modeling - Functional Modeling & Information FlowBehavioral Modeling-Structured Analysis - Object Oriented Analysis - Domain Analysis-Object Oriented Analysis process - Object Relationship Model - Object Behaviour Model. Design Concepts & Principles - Design Process - Design Concepts - Modular Design – Design Effective Modularity - Introduction to Software Architecture - Data Design – Transform Mapping – Transaction Mapping – OOD -Design System design process- Object design process - Design Patterns.

UNIT IV- IMPLEMENTATION & TESTING

Top-Down , Bottom-Up , object oriented product Implementation & Integration. Software Testing methods-White Box, Basis Path-Control Structure –Black Box-Unit Testing-Integration testing Validation & System testing. Testing OOA & OOD models-Object oriented testing strategies.

UNIT V- MAINTENANCE

Maintenance process-System documentation-program evolution dynamics-Maintenance costs Maintainability measurement – Case Studies

REFERENCES

- 1. Roger S. Pressman, "Software Engineering A Practitioner's Approach", Sixth Edition, Tata McGraw Hill 2010.
- Grady Booch, Robert A.Maksimchuk Michael W. Engle, Bobby J.Young Jim Connallen Kelli A. Houston, "Object oriented analysis and design withapplication", Addison Wesley, 3rdedition, 2010.
- 3. Pankaj Jalote "An Integrated Approach to Software Engineering" Narosa Publishing House 2005.
- 4. Carlo Ghezzi Mehdi Jazayer, Dino Mandrioli, "Fundamentals of SoftwareEngineering", Prentice Hall of India 2002.

ELECTIVE - I	L	Т	Р	С
Total Contact Hours - 45	3	0	0	3

(12 hours)

(12 hours)

(14 hours)

Students to choose one Ejlective course from the list of courses mentioned in the curriculum

ELECTIVE - II		Т	Ρ	С
Total Contact Hours - 45	3	0	0	3

Students to choose one Elective course from the list of courses mentioned in the curriculum

	SUPPORTIVE COURSE	L	Т	Ρ	С
Total	Contact Hours - 45	3	0	0	3
Students to choose	rses	ment	ioned	in the	

curriculum either in I, II or III semester

	L	Т	Р	С			
INTERDISCIPLINARY ELECTIVE	3	0	0	3			
Total Contact Hours - 45							
Students to choose one Elective course from the list of P	ost G	iradua	ite co	urses			
specified under the Faculty of Engineering and Technology other than courses under							
M.Tech (CSE) curriculum either in I, II or III semester							

SEMESTER II

		DATABASE TECHNOLOGY	L	Т	Ρ	С	
00	CS2004 Total Contact Hours - 60 Prerequisite		4	0	0	4	
03							
		Nil					
PURPOSE							
This	course	e provides the fundamental concepts of data base sy	stems	5			
INST	RUCT	IONAL OBJECTIVES					
1.	To pro	vide a general introduction to relational model					
2.	To learn about ER diagrams						
3.	3. To learn about Query processing and Transaction Processing						

UNIT I – INTRODUCTION AND CONCEPTUAL MODELING

Database and database users – Database system concepts and architecture – data modeling using Entity-Relationship model – Enhanced Entity-Relationship model.

UNIT II - THE RELATIONAL DATA MODEL

Relational model: Concepts, Constraints, Languages, Design and Programming – Relational data model and relational database constraints – relational algebrarelational database design by ER and EER-to-relational mapping – SQL – schema definition, constraints, Queries and Views.

UNIT III – NORMALIZATION, DATA STORAGE, INDEXING AND QUERY PROCESSING (12 hours) Functional dependencies and normalization of relational databases – relational database design algorithms and further dependencies . Disk storage, Indexing, Query processing and physical design – disk storage, basic file structures and hashing – indexing structures for files – algorithms for query processing and optimization.

UNIT IV - TRANSACTION PROCESSING AND OBJECT RELATIONAL

DATABASES (12 hours) Transaction processing concepts – Introduction – concurrency control and database recovery techniques. Concepts for Object databases – Object database standards, languages and design, object relational and extended-relational systems.

UNIT V - ADVANCED MODELING

Database security - Enhanced data models for advanced applications – distributed databases and client-server architecture – web database programming using PHP – XML – extensible markup language.

(12 hours)

(12 hours)

(12 hours)

REFERENCES

- 1. RamezElmasri and ShamkantB.Navathe, "Fundamentals of DatabaseSystems", Fifth Edition, Pearson, 2008.
- 2. Silberschatz, H. Korth and S. Sudarshan, "Database System Concepts", 6th Edition, McGraw-Hill International, 2011.
- 3. Hector Garcia-Molina, Jeffrey D.Ullman, Jennifer Widom, "Database System *TheComplete Book*", 2ndEdition, Pearson 2008.

	COMPUTER NETWORKS AND MANAGEMENT	L	Т	Ρ	С
CC200E	Total Contact Hours – 60	4	0	0	4
CS2005	Prerequisite				
	Nil				

PURPOSE

This course gives a overview of computer networks, TCP/IP protocols and also covers security and network management aspects

INSTRUCTIONAL OBJECTIVES

1. IPV4 and IPV6 protocols routing

2. Frame relay and ATM congestion control management

3. Network security and Integrated and Differentiated Services

4. Network management and its protocols

UNIT I - HIGH SPEED NETWORKS

(12hours)

(12hours)

Frame Relay Networks – Asynchronous transfer mode – ATM Protocol Architecture, ATM logical Connection, ATM Cell – ATM Service Categories – AAL. High Speed LAN's: Fast Ethernet, Gigabit Ethernet, Fibre Channel – Wireless LAN's.

UNIT II - CONGESTION AND TRAFFIC MANAGEMENT

Queuing Analysis- Queuing Models – Single Server Queues – Effects of Congestion – Congestion Control – Traffic Management – Congestion Control in Packet Switching Networks – Frame Relay- Congestion Control.

13

UNIT III - TCP AND ATM CONGESTION CONTROL

TCP Flow control – TCP Congestion Control – Retransmission – Timer Management – Exponential RTO back-off – KARN's Algorithm – Window management – Performance of TCP over ATM. Traffic and Congestion control in ATM – Requirements – Attributes – Traffic Management Frame work, Traffic Control – ABR traffic Management – ABR rate control, RM cell formats, ABR Capacity allocations – GFR traffic management.

UNIT IV - INTEGRATED AND DIFFERENTIATED SERVICES (12hours)

Integrated Services Architecture – Approach, Components, Services- Queuing Discipline, FQ, PS, BRFQ, GPS, WFQ – Random Early Detection, Differentiated Services.

UNIT V - PROTOCOLS FOR QOS SUPPORT

RSVP – Goals & Characteristics, Data Flow, RSVP operations, Protocol Mechanisms – Multiprotocol Label Switching – Operations, Label Stacking, Protocol details – RTP – Protocol Architecture, Data Transfer Protocol, RTCP.

REFERENCES

- 1. William Stallings, "*High Speed Networks and Internet*", Pearson Education, Second Edition, 2012.
- 2. Prakash.C.Guptha, "Data Communication and Computer Networks", PHI, 6th printing 2012.
- 3. Larry L. Peterson and Bruce S Davis , "Computer Network A System Approach", Elsevier, 5th edition 2010.
- 4. IrvanPepelnjk, Jim Guichard and Jeff Apcar, "*MPLS and VPN Architecture*", Cisco Press, Volume 1 and 2, 2003.

		SYSTEM PROGRAMMING	L	Т	Ρ	С			
00	Total Contact Hours - 75		3	0	2	4			
5	CS2006 Prerequisite								
		Nil							
PURPOSE									
To learn the design principles of various system software and its techniques									
INST	RUCTI	ONAL OBJECTIVES							
	To lear	n the various system software like assemblers	, load	ers, I	inkers	and			
1.	macro								
		ly the features of design phases and parsing techni				r			
	To lea	in the various techniques of syntax directed t	ransla	tion	&	code			
3.	optimiz	ation							
J.	opuniz								

(12hours)

(12hours)

UNIT I – INTRODUCTION AND ASSEMBLERS (13 hours) Introduction: Language Processor Fundamentals, Data Structures Language Processing, Search data structures, Data Structures, Scanning, Parsing, Assemblers

- Elements of assembly language programming, Simple assembly scheme, Pass structure of assemblers, Design of a two pass assembler, single pass assembler for IBM PC.

UNIT II – LOADERS AND LINKERS

Macro and Linkers: Macro definition and call, Macro expansion, Nested macro calls, Advanced macro facilities, Design of preprocessor, Relocation and linking concepts, Design of a linker, Self relocating program, Linker for MS-DOS, Linking for overlays, Loaders.

UNIT III – GRAMMARS, EXPRESSIONS & AUTOMATA

Context free Language - Context free grammar - regular expression - Recognizing of patterns - finite automation (deterministic & non deterministic) Conversion of NDFA to DFA - Conversion of regular expression of NDFA - minimization of NDFA - Derivation - parse tree - ambiguity - handle - Lexical Analysis.

UNIT IV - SYNTAX ANALYSIS

Role of parsers - Top down parsing : Left recursion - left factoring - Handle pruning, predictive parsing - recursive descent parsing - Bottom up parsing: Shift reduce parsing - operator precedence parsing - LR parsing - LR (0) items - SLR parsing -Canonical LR parsing -LALR parsing

UNIT V- SYNTAX DIRECTED TRANSLATION & CODE OPTIMIZATION (15 hours)

Intermediate Languages - Quadruple - triple - indirect triples - three-address code-Introduction - Syntax tree- DAG - S-attribute - R-attributes - Assignment statement schemes - Back patching - Syntax free construction - CASE statements - Symbol Table - Symbol table contents - data structure for symbol tables - storage allocation -Runtime storage management. Sources of optimization - Loop optimization - DAG representation of basic block - Dominators - flow graphs - object program - problems in code generation - machine model - simple code generator - Code generation from DAG - peephole optimization.

REFERENCES

- 1. Dhamdhere D.M., "Systems Programming", Tata McGraw Hill Education Pvt. Ltd., 2011.
- Alfred V Aho, Jeffery D Ullman, Ravi Sethi, "Compilers, Principles 2. Techniquesand tools", Pearson Education, 2011.
- 3. Srimanta Pal, "Systems Programming", Oxford University Press, 2011. 14

(16 hours)

(16 hours)

(15 hours)

4. Raghavan V., "*Principles of Compiler Design*", Tata McGraw Hill Education Pvt. Ltd., 2010.

	ELECTIVE - III	L	Т	Ρ	С			
	Total Contact Hours - 45	3	0	0	3			
Students to cho	oose one Elective course from the list of courses	menti	ioned	in the				
curriculum								

ELECTIVE - IV		L	Т	Ρ	С			
	Total Contact Hours - 45	3	0	0	3			
Students to cho	Students to choose one Elective course from the list of courses mentioned in the							
curriculum								

SEMESTER III

ELECTIVE – V	L	T	Ρ	С
Total Contact Hours - 45	3	0	0	3

Students to choose one Elective course from the list of courses mentioned in the curriculum

	ELECTIVE – VI		L	Т	Ρ	С	
		Total Contact Hours - 45	3	0	0	3	
Stude	Students to choose one Elective course from the list of courses mentioned in the						
curric	lum						

SEMINAR	L	Т	Р	С			
	0	0	1	1			
PURPOSE							
To train the students in preparing and presenting technical topics.							
INSTRUCTIONAL OBJECTIVE							
The student shall be capable of identifying topics of interest related to the program of							
	students in preparing and presenting technical topi	students in preparing and presenting technical topics.	0 0 students in preparing and presenting technical topics.	students in preparing and presenting technical topics.			

study and prepare and make presentation before an enlightened audience.

The students are expected to give at least two presentations on their topics of interest which will be assessed by a committee constituted for this purpose. This course is mandatory and a student has to pass the course to become eligible for the award of degree. Marks will be awarded out of 100 and appropriate grades assigned as per the regulations

CN2049	PROJECT WORK PHASE I	L	Т	Р	С		
CN2049	(III SEMESTER)	0	0	12	6		
CN2050	PROJECT WORK PHASE II (IV SEMESTER)	0	0	32	16		
PURPOSE							
To undertake research in an area related to the program of study							

INSTRUCTIONAL OBJECTIVE

The student shall be capable of identifying a problem related to the pro gram of study and carry out wholesome research on it leading to findings which will facilitate development of a new/improved product, process for the benefit of the society.

M.Tech projects should be socially relevant and research oriented ones. Each student is expected to do an individual project. The project work is carried out in two phases – Phase I in III semester and Phase II in IV semester. Phase II of the project work shall be in continuation of Phase I only. At the completion of a project the student will submit a project report, which will be evaluated (end semester assessment) by duly appointed examiner(s). This evaluation will be based on the project report and a viva voce examination on the project. The method of assessment for both Phase I and Phase II is shown in the following table:

Assessment	Tool	Weightage
In- semester	l review	10%
	II review	15%
	III review	35%
End semester	Final viva voce	40%
	examination	

Student will be allowed to appear in the final viva voce examination only if he / she has submitted his / her project work in the form of paper for presentation / publication

in a conference / journal and produced the proof of acknowledgement of receipt of paper from the organizers / publishers.

PROGRAMME ELECTIVES

		COMPONENT BASED SYSTEM DESIGN	L	Т	Р	С		
CS2101		Total Contact Hours – 45	3	0	0	3		
		Prerequisite						
		Nil						
PURPOSE								
This	This course enables us to understand the concept of Component and its							
repre	esentatio	n in languages and packages						
INST	RUCTIC	NAL OBJECTIVES						
1.	To learr	Fundamentals of Component Based Developmen	t					
2.	To learr	Design of software components and managemen	t					
	To have	an overview of the component based technologies	s like	CORB	A,COI	M,		
3.	EJB tec	hnologies and the professions available on the bas	sis of t	hese				
	technologies							

UNIT I - BASIC CONCEPTS

Software Components—Component models and Component Services—Risk Factors and success factors pertaining to component based models-Component Based Software Development.

UNIT II - COMPONENTS, ARCHITECTURE AND PROCESS

Component Architecture, Component Frameworks-contextual and block box, Component Development -methodology and tools, Component distribution and acquisition, Component assembly, markets and components.

UNIT III - DESIGN OF SOFTWARE COMPONENT

Software Components and the UML Component Infrastructures-Business Components— Components and Connectors — Designing Models of Modularity & Integration.

UNIT IV - MANAGEMENT OF COMPONENT BASED SOFTWARE SYSTEMS

Measurement and Metrics for Software Components-Selecting the right Components-Software Component Project Management-Trouble with Testing Components-Configuration Management and Component Libraries-Evolution and Maintenance of Management of Component based Systems.

UNIT V - COMPONENT TECHNOLOGIES AND PROFESSIONS (9 hours)

(9 hours)

(9 hours)

(9 hours)

Overview of the Following Component Models: CORBA, COM+, Enterprise Java Beans, Software Agents. Professions available under component technology

REFERENCES

- 1. Clemens Szyperski, "Component Software Beyond object orientedprogramming", Pearson Education, 2ndedition, 2004.
- 2. George T. Heinemen, William T. Council, " *Component Based SoftwareEngineering*". Addison-Wesley: Upper Saddle River, 2001.
- 3. Thomas J. Mowbray, William A.Ruh, "Inside CORBA Distributed ObjectStandards and Applications", Addison – Wesley, 2001.
- 4. Dale Rojerson, "Inside COM", Microsoft Press, 2001.
- 5. Andreas Vogel, Keith Duddy "Java Programming with CORBA" John Wiley & Sons. 1998.
- 6. Kuth Short, "Component Based Development and Object Modeling", Sterling Software, 1997.
- 7. http://web.cs.wpi.edu/~heineman/html/research_/research.html

		BIO INSPIRED COMPUTING	L	Т	Р	С
0	52102	Total Contact Hours – 45	3	0	0	3
	52102	Prerequisite				
		Nil				
PURPOSE						
To learn how natural and biological systems influence computational field						
INST	RUCTI	ONAL OBJECTIVES				
1.	Be able	e to explain how biological systems exploit natural p	roces	ses.		
2. Be able to visualize how complex and functional high-level phenomena can emerge from low-level interactions.						
3.	 Be able to understand how large numbers of agents can self-organize and adapt. Be able to design and implement simple bio-inspired algorithms. 					

UNIT I – INTRODUCTION

(9 hours)

What is Life? - Life and Information - The Logical Mechanisms of Life - What is Computation? Universal Computation and Computability - Computational Beauty of Nature (fractals, L-systems, Chaos) - Bio-inspired computing - Natural computing - Biology through the lens of computer science

UNIT II - COMPLEX SYSTEMS & ARTIFICIAL LIFE

Complex Systems and Artificial Life - Complex Networks - Self-Organization and Emergent Complex Behavior - Cellular Automata - Boolean Networks -Development and Morphogenesis - Open-ended evolution

UNIT III - NATURAL COMPUTATION AND NEURAL NETWORKS (9 hours)

Biological Neural Networks- Artificial Neural Nets and Learning - pattern classification & linear separability - single and multilayer perceptrons, backpropagation - associative memory - Hebbian learning - Hopfield networks - Stochastic Networks - Unsupervised learning

UNIT IV - EVOLUTIONARY SYSTEMS AND ALGORITHMS (9 hours)

Evolutionary Programming: biological adaptation & evolution - Autonomous Agents and Self-Organization: termites, ants, nest builiding,flocks, herds, and schools.Geneticalgorithms:Schema theorem - Reproduction-Crossover-Mutation operators

UNIT V - COMPETITION, COOPERATION AND SWARM INTELLIGENCE(9 hours)

Collective Behavior and Swarm Intelligence - Social Insects - Stigmergy and Swarm Intelligence; Competition and Cooperation - zero- and nonzero-sum games - iterated prisoner's dilemma - stable strategies - ecological & spatial models - Communication and Multi-Agent simulation – Immunocomputing

REFERENCES

- 1. Leandro Nunes De Castro, Fernando Jose Von Zuben, "Recent Developments in Biologically Inspired Computing", Idea Group Publishing, 2005.
- Leandro Nunes De Castro , "Fundamentals of Natural Computing: Basic concepts, Algorithms and Applications", Chapman & Hall/ CRC Computer & Information Science Series, 2006.
- 3. Dario Floreano, Claudio Mattiussi, "Bio-Inspired Artificial Intelligence: Theories, Methods and Technologies", MIT Press, 2008.
- 4. http://informatics.indiana.edu/rocha/i-bic/
- 5. http://web.eecs.utk.edu/~mclennan/Classes/420/
- 6. http://www.cs.stir.ac.uk/courses/31YB/

	DISTRIBUTED OPERATING SYSTEMS	L	Т	Ρ	С
CS2103	Total Contact Hours - 45	3	0	0	3
	Prerequisite				

		Nil					
PUR	POSE						
This course provides an in-depth examination of the principles of distributed systems							
in ge	in general and the functionalities of distributed operating system in particular.						
INSTRUCTIONAL OBJECTIVES							
1.	To unders	stand the fundamental concepts of distributed system	stem				
2.	To unders	stand how communication takes place in Distribu	ted sy	stems	5		
3. To comprehend the necessity of synchronization, consistency and replication in a Distributed System							
4.							

UNIT I - FUNDAMENTALS OF DISTRIBUTED SYSTEMS

Distributed Systems – Goals- Hardware and Software concepts – Design issues-Types of distributed systems - System architectures

UNIT II - COMMUNICATION IN DISTRIBUTED SYSTEMS (9 hours)

Communication in Distributed systems: Layered protocols - ATM networks - Client Server model– Message Passing - Remote Procedure Calls.

UNIT III - SYNCHRONIZATION AND PROCESSES

Synchronization: Clock synchronization – Mutual exclusion – Election algorithms, -Atomic Transactions – Deadlocks; Processes - Threads – System models – processor allocation – Scheduling.

UNIT IV - CONSISTENCY, REPLICATION AND FAULT TOLERANCE (9 hours)

Introduction- Data Centric Consistency Models- Client-Centric Consistency Models-Replica Management -Consistency protocols- Introduction to fault Tolerance -Process Resilience -Distributed Commit - Reliable Client Server Communication.

(9 hours)

(8 hours)

UNIT V - DISTRIBUTED OBJECT BASED SYSTEMS AND DISTRIBUTED FILE

SYSTEMS (10 hours) Distributed object based systems- Architectureprocesses -communication-Synchronization -consistency and replication-Distributed file systems - processes - communication - synchronization and consistency and replication

REFERENCES

- Andrew S. Tanenbaum, "Distributed Operating Systems", Pearson Education, 1. Reprint, 2011.
- 2. Andrew S. Tannenbaum, Maarten Van Steen, "Distributed Systems-Principlesand Paradigms", Second Edition, PHI, 2007.
- 3. Pradeep K. Sinha, "Distributed Operating Systems Concepts and Design", PHI, 2007.

		DIGITAL IMAGE PROCESSING	L	Т	Р	С	
	S2104	Total Contact Hours - 45	3	0	0	3	
	52104	Prerequisite					
		Nil					
PURPOSE							
The	The purpose of this course is to impart knowledge on various Digital Image Processing						
Tech	nniques a	nd their Applications	-			_	
INST	ructio	NAL OBJECTIVES					
1.	To learn	Image Fundamentals and Processing Techniques					
2.	2. To be familiar with Image Transformations in Spatial Domain and Frequency Domain						
3.	To learn various Filters for Image Restoration						
4.	To study various Image Compression and Segmentation Techniques						
<u>т.</u>	TO Study	valious image compression and begine indution i	COIIII	ques			

UNIT I – DIGITAL IMAGE FUNDAMENTALS

Introduction - Origin - Steps in Digital Image Processing - Components; Elements of Visual Perception - Light and Electromagnetic Spectrum - Image Sensing and Acquisition - Image Sampling and Quantization - Relationships between pixels.

UNIT II – IMAGE ENHANCEMENT

Spatial Domain: Gray level transformations - Histogram processing - Basics of Spatial Filtering-Smoothing and Sharpening Spatial Filtering - Frequency Domain: Introduction to Fourier Transform – Smoothing and Sharpening frequency domain filters - Ideal, Butterworth and Gaussian filters. (9 hours)

UNIT III – IMAGE RESTORATION

SRM-M.Tech.-CSE-2018

(9 hours)

(8 hours)

Noise models – Mean filters – Order Statistics – Adaptive filters – Band reject – Band pass – Notch – Optimum notch filtering – Inverse Filtering – Constrained Least Square Filtering – Wiener filtering.

UNIT IV – IMAGE COMPRESSION

(9 hours)

Fundamentals – Image Compression models – Error Free Compression – Variable Length Coding –Bit – Plane Coding – Lossless Predictive Coding – Lossy Compression – Lossy Predictive Coding – Wavelet Coding – Compression Standards – JPEG2000.

UNIT V – IMAGE SEGMENTATION AND REPRESENTATION (10 hours)

Segmentation – Detection of Discontinuities – Edge Linking and Boundary detection – Region based segmentation; Representation – Boundary descriptors – Simple Descriptors – Shape numbers –Regional descriptors – Simple and Topological Descriptors – Introduction to Image Processing Toolbox – Practice of Image Processing Toolbox – Case studies–Various Image Processing Techniques.

REFERENCES

- 1. Rafael C. Gonzales, Richard E. Woods, "*Digital Image Processing*", Pearson Education, Third Edition, 2010.
- 2. Anil Jain K. "Fundamentals of Digital Image Processing", PHI Learning Pvt. Ltd., 2011.
- 3. Jayaraman S., Esaki Rajan S., T.Veera Kumar, "*Digital Image Processing*", Tata McGraw Hill Pvt. Ltd., Second Reprint, 2010.
- Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, "Digital ImageProcessing Using MATLAB", Tata McGraw Hill Pvt. Ltd., Third Edition, 2011.
- 5. Bhabatosh Chanda, Dwejesh Dutta Majumder, "*Digital Image Processing andanalysis*", PHI Learning Pvt. Ltd., Second Edition, 2011.
- 6. Malay K.Pakhira, "Digital Image Processing and Pattern Recognition", PHI Learning Pvt. Ltd., First Edition, 2011.
- 7. Annadurai S., Shanmugalakshmi R., "Fundamentals of Digital ImageProcessing", Pearson Education, First Edition, 2007.
- 8. http://eeweb.poly.edu/~onur/lectures/lectures.html
- 9. http://www.caen.uiowa.edu/~dip/LECTURE/lecture.html

24

UNIT III – WINDOWS AND MULTIMEDIA

Windows - New and Navigation schemes selection of window, selection of devices based and screen based controls; Components - text and messages, Icons and increases - Multimedia, colors, uses problems, choosing colors.

UNIT II – DESIGN PROCESS – SCREEN DESIGN

Design process - Human interaction with computers, importance of human characteristics human consideration, Human interaction speeds, understanding business junctions. Screen Designing : Design goals - Screen planning and purpose, organizing screen elements, ordering of screen data and content - screen navigation and flow - Visually pleasing composition - amount of information - focus and emphasis - presentation information simply and meaningfully - information retrieval on web - statistical graphics - Technological consideration in interface design

Introduction : Importance of user Interface – definition, importance of good design. Benefits of good design. A brief history of Screen design. The graphical user interface - popularity of graphics, the concept of direct manipulation, graphical system, Characteristics, Web user - Interface popularity, characteristics- Principles of user interface.

UNIT I – INTRODUCTION

CS2105					5	L
	Total Contact Hours – 45	3	0	0	3	
C32105	Prerequisite					
	Nil					
						Ľ

HIMAN COMPLITED INTEDACTION

PURPOSE

This course on Human Computer Interaction provides a basic understanding of Human interfaces, their design principles tools as well as interfaces through thought process

INSTRUCTIONAL OBJECTIVES

To learn the design principles of developing a Human Computer Interface 1.

- Study of tools and devices required for designing a good interface
- 3. Brain computer Interfaces , principles and their tools
- (9 hours)

(9hours)

SRM-M.Tech.-CSE-2018

25

Wireless transmission - Spread spectrum-Medium Access Control : Motivation for

The basics of wireless communication & how communication takes place in 1 wireless networks. 2. Cellular communication. 3. G.S.M and CDMA.

Specialized MAC- SDMA- FDMA- TDMA- CDMA-Comparison of Access

Mobile TCP. **UNIT I - INTRODUCTION**

Routing- Localization- Handover.

PURPOSE

4

This Course deals with the fundamental concept of wireless communication systems and networks INSTRUCTIONAL OBJECTIVES

WIRELESS NETWORKS Т Ρ С L Total Contact Hours - 45 3 0 3 0 CS2106 Prerequisite Nil

Wilev , 2007. 2.

REFERENCES

1.

Ben Shneidermann, Catherine Plaisant, "Designing the user interface, Strategies for effective Human Computer Interaction", 3rd Edition, PearsonEducation, 2008.

- 3. Alan Dix, Janet Finlay, GreGoryd, Abowd, Russell Beale, "Human -ComputerInteraction", 3rd edition, Pearson Education, 2004.
- 4 http://cs.brown.edu/courses/cs295-7/

- 5. http://www.cs.tufts.edu/~jacob/250bci/

Software tools - Specification methods, interface - Building Tools - Interaction Devices - Keyboard and function keys pointing devices - speech recognition digitization and generation - image and video displays - drivers.

BCI techniques - EEG - waveform and signals from brain - VEP - tools for recording

Wilbert O Galitz, "The essential guide to user interface design", 3rd Edition, ,

UNIT V- BRAIN COMPUTER INTERFACE

and analyzing – applications areas.

Mechanisms-Telecommunications: GSM- DECT- TETRA-Satellite Systems: Basics-

(9 hours)

(9 hours) BCI concepts - Overview of brain organization, neural function, encoding models, and

SRM-M.Tech.-CSE-2018

Traditional TCP - Indirect TCP- Snooping TCP- Mobile TCP- Fast Retransmit/Fast Recovery- Transmission/Timeout Freezing- Selective Retransmission- Transaction

UNIT V - WAP

Oriented TCP.

Architecture- Datagram Protocol- Transport Layer Security- Transaction Protocol-Session Protocol- Application Environment- Wireless Telephony Application.

REFERENCES

1. J.Schiller, "Mobile Communication", Addison Wesley, 2000.

Optimization- Reverse Tunneling- IPV6- DHCP- Ad hoc Networks.

- 2. William Stallings, "Wireless Communication and Networks", Pearson Education, 2003.
- 3. Singhal, "WAP-Wireless Application Protocol", Pearson Education, 2003.
- LotherMerk, Martin.S.Nicklaus and Thomas Stober, "Principle of 4. MobileComputing", Second Edition, Springer, 2003.
- William C.Y.Lee, "Mobile Communication Design Fundamentals", John Wiley, 5. 1993.

(9 hours)

(9 hours)

(9 hours)

UNIT II - WIRFLESS NETWORKS

UNIT III - MOBILE NETWORK LAYER

UNIT IV - MOBILE TRANSPORT LAYER

Wireless LAN-Infrared Vs Radio Transmission-Infrastructure Networks- Ad hoc Networks- IEEE 802.11-HIPERLAN- Bluetooth- Wireless ATM: Working Group-Services- Reference Model- Functions- Radio Access Laver- Handover- Location Management- Addressing Mobile Quality of Service- Access Point Control Protocol.

Mobile IP: Goals- Assumptions and Requirement- Entities-IP Packet Delivery- Agent Advertisement and Discovery- Registration- Tunneling and Encapsulation-

		TCP/IP TECHNOLOGY	L	Т	Р	С	
00	2107	Total Contact Hours - 45	3	0	0	3	
	2107	Prerequisite					
		Nil					
PURPOSE							
This	This course gives a complete understanding of TCP / IP Technology.						
INST	RUCT	ONAL OBJECTIVES					
1.	To stu	dy the standards of TCP / IP protocol and addressin	g type	es.			
2.	To Stu	dy various protocols like ARP, RARP, UDP, ICMP, I	GMP				
3.	 To learn Multicasting protocols, SNMP,SMTP and TCP/IP on Embedded Systems and IPV6. 						
4.	To stu	dy the important network protocols and IPV6 standa	rds.				
5.	To stu	dy the standards of TCP / IP protocol and addressin	g type	es.			

UNIT I - OSI MODEL AND TCP/IP PROTOCOL SUITE (9 hours) The OSI Model-TCP/IP Protocol Suite Architecture-Addressing-Wired Local Area Networks-Wireless LANS-Point to Point WANS-Switched WANS-Connecting Device.

UNIT II - INTRODUCTION TO NETWORK LAYER

Switching-Packet Switching Network-Network Layer Services-Network Layer Issues-Addressing-Classless Addressing-Special Addresses-NAT-Delivery-Classful Forwarding Structure of a Router.

UNIT III - INTERNET PROTOCOL

Datagram - fragmentation - options - checksum - IP package - Address Mapping-ARP Protocol-ARP Package-RARP-ICMP Protocol-Messages-Debugging Tools-ICMP Packages.

UNIT IV -TCP/UDP PROTOCOLS (9 hours) Transport Layer Services - TCP Protocols-TCP Connection-State Transition

Diagrams-Windows in TCP-flow, congestion and error control - TCP package and operation.

UNIT V- IMPORTANT NETWORK PROTOCOLS

RIP-OSPF-BGP-IGMP-TELNET-DNS-FTP-SMTP-POP-SNMP-TCP/IP on Embedded Systems-The Socket Programming Interface.-IPV6-Terminology-Port Addresses-Header Format-IP Security.

REFERENCES

Behrouz Forouzan, "TCP/IP protocol suite", Tata Mc Grawhill, Fourth Edition, 1. 2012.

27

(9 hours)

(9 hours)

- 2. Thomas Herbert, "LINUX tcp/ip Networking on Embedded Systems" Cengage Publications, First Edition, 2011.
- 3. Douglas Comer, "Internetworking with TCP / IP", Vol 1, PHI, First Edition, 2000.
- 4. SidnieFeit, "TCP/IP Architecture, Protocols and Implementation with IPV6 and IP Security", Tata McGrawhill, Second Edition, 2008.

		PATTERN RECOGNITION TECHNIQUES	L	Т	Ρ	С		
0	2100	Total Contact Hours - 45	3	0	0	3		
CS2108		Prerequisite						
		Nil						
PUR	PURPOSE							
To s	tudy the	e Pattern Recognition techniques and its application	S					
INS	FRUCT	IONAL OBJECTIVES						
1.	To lea	rn the fundamentals of Pattern Recognition techniqu	les					
2.	To lea	To learn the various Statistical Pattern recognition techniques						
3.	To lea	To learn the various Syntactical Pattern recognition techniques						
4.								

UNIT I – PATTERN RECOGNITION OVERVIEW

Pattern recognition, Classification and Description—Patterns and feature Extraction with Examples—Training and Learning in PR systems—Pattern recognition Approaches

UNIT II – STATISTICAL PATTERN RECOGNITION

Introduction to statistical Pattern Recognition—supervised Learning using Parametric and Non Parametric Approaches.

UNIT III - LINEAR DISCRIMINANT FUNCTIONS AND UNSUPERVISED

LEARNING AND CLUSTERING (9 hours) Introduction—Discrete and binary Classification problems—Techniques to directly Obtain linear Classifiers --Formulation of Unsupervised Learning Problems— Clustering for unsupervised learning and classification.

UNIT IV- SYNTACTIC PATTERN RECOGNITION

Overview of Syntactic Pattern Recognition—Syntactic recognition via parsing and other grammars–Graphical Approaches to syntactic pattern recognition—Learning via grammatical inference.

UNIT V- NEURAL PATTERN RECOGNITION

SRM-M.Tech.-CSE-2018

(9 hours)

(9 hours)

(9 hours)

Introduction to Neural networks-Feedforward Networks and training by Back Propagation—Content Addressable Memory Approaches and Unsupervised Learning in Neural PR.

REFERENCES

- Robert Schalkoff, "Pattern Recognition: Statistical Structural and 1. NeuralApproaches", John wiley&sons, Inc, 1992.
- Earl Gose, Richard johnsonbaugh, Steve Jost, "Pattern Recognition and 2. ImageAnalysis", Prentice Hall of India, Pvt Ltd, New Delhi, 1996.
- Duda R.O., P.E.Hart& D.G Stork. " Pattern Classification". 2nd Edition. 3. J.WileyInc 2001.
- 4. Duda R.O.& Hart P.E., "Pattern Classification and Scene Analysis", J.wileyInc, 1973.
- 5. Bishop C.M., "Neural Networks for Pattern Recognition", Oxford University Press. 1995.

		DATA WAREHOUSING AND ITS APPLICATIONS	L	т	Р	С			
CS	2109	Total Contact Hours - 45	3	0	0	3			
		Prerequisite							
		Nil							
PUR	PURPOSE								
This	course	provides in-depth knowledge about data warehousir	ng tec	hniqu	es				
INST	RUCTI	ONAL OBJECTIVES							
1.	To und	derstand the fundamental concepts of data warehou	sing te	echno	logy				
2.	To lea	rn step-by-step approach to designing and building a	a data	ware	house	;			
3.									

UNIT I - INTRODUCTION TO DATA WAREHOUSING (8 hours)

Introduction to data warehousing-data Warehouse: Defining features-Architecture of data warehouse-Gathering the business requirements. Planning and project management. (8 hours)

UNIT II - DATA WAREHOUSE SCHEMA

Data Warehouse schema-Dimensional modeling-ETL Process-Testing, Growth and Maintenance-OLAP in the Data warehouse.

UNIT III - BUILDING A DATA WAREHOUSE

Building a data warehouse-Introduction-critical success factors-Requirement analysis-Planning for the data warehouse-The data warehouse design stage-Building and

(10 hours)

implementing data marts-Building data warehouses-backup and Recovery-Establish the data quality framework-Operating the Warehouse-Recipe for a successful warehouse-Data warehouse pitfalls.

UNIT IV - DATA MINING BASICS

Data Mining basics-Moving into data mining-Introduction to Web Mining, Text Mining Temporal Data Mining and Spatial Data mining-Issues in Data Mining.

UNIT V - CASE STUDY

Data Warehousing in the Tamilnadu Government-Data Warehouse for the Ministry of commerce- Data Warehouse for the government of Andhra Pradesh- Data Warehousing in Hewlett –Packard- Data Warehousing in Levi Strauss- Data Warehousing in the World Bank-HARBOR, A Highly available Data Warehouse-A typical Business data Warehouse for a Trading company-Customer data warehouse of the world's first and largest online Bank in the united Kingdom-A German super market EDEKA's Data Warehouse.

REFERENCES

- 1. ReemaTheraja "Data Warehousing" by Oxford University Press-2011.
- 2. Prabhu C.S.R., "Data Warehousing Concepts, Techniques, Products and Applications" PHI Learning Private Limited, Third Edition, 2011.
- 3. Amitesh Sinha, . "Data Warehousing", Thomson Asia Pte Ltd-2001

		NETWORK SECURITY AND CRYPTOGRAPHY	L	т	Р	С	
CS	S2110	Total Contact Hours - 45	3	0	0	3	
		Prerequisite					
		Nil					
PUR	POSE						
This	course p	rovides a way to understand Network Securit y	and o	differe	nt typ	es of	
1 31	0 1	techniques. It enables the student to have a	a mix	of fu	Indam	nental	
conce	epts togel	her with practical aspects of security.					
INST	RUCTIO	NAL OBJECTIVES					
1.	To study	the Importance of Firewalls and their types.					
2.	To study	cryptographic algorithms.					
3.	To study	cryptographic protocols.					
4.	To study Wireless security						
5.	To study	RFID's and E- Passports					

UNIT I - INFORMATION SECURITY BASICS AND TYPES OF ATTACKS (9 hours)

(11 hours)

(8 hours)

SRM-M.Tech.-CSE-2018

Information Security- History- Security as a process, Not Point Products- Access Attacks- Modification Attacks- Denial - of- Service Attacks- Repudiation Attacks- IP Spoofing- Malicious Code

UNIT II - INFORMATION SECURITY SERVICES AND ENCRYPTION (12 hours)

Information Security Services- Confidentiality- Integrity- Availability- Accountability-Secret key Encryption- DES-AES (Rijndael)- Number Theory – Prime number – Modular arithmetic – Euclid's algorithm - Fermet's and Euler's theorem – Discrete logarithm - Public Key Encryption- Diffie- Hellman Key Exchange- Elliptic Curve Cryptography

UNIT III - FIREWALLS AND INTRUSION

DETECTION Firewalls– Types of Firewalls –Intrusion Types- Setup and Manage-Detection-Intrusion Prevention

UNIT IV - WIRELESS LAN SECURITY AND CELLPHONE SECURITY (9 hours)

Authentication_ Confidentiality and Integrity- GSM Security- Security UMTS

UNIT V - RFIDS AND E-PASSPORTS

RFID Basics- applications- Security Issues- Generation 2 tags- Addressing RFID Privacy Concerns- Electronic Passports

REFERENCES

- 1. Eric Maiwald , "Fundamentals of Network Security", Tata McGraw Hill Edition, 2011.
- 2. Bernard Menezes, "*Network Security and Cryptography*", Cengage Learning, India Edition, 2010.
- 3. Behrouz A.Forouzan, DebdeepMukhopadhyay, "Cryptography and NetworkSecurity", Tata McGraw Hill Second Edition, 2010.
- 4. PallapaVenkataram, "Wireless and Mobile Network Security", Tata McGraw Hill Edition, 2010.
- 5. Terry Parode, Gordon Snyder, "*Network Security*" Cengage Learning, India Edition, 2008.
- 6. William Stallings, "*Cryptography & Network Security*", Pearson Education, 4th Edition 2010.

	GRID COMPUTING	L	Τ	Ρ	С
000111	Total Contact Hours - 45	3	0	0	3
CS2111	Prerequisite				
	Nil				

(6 hours)

PURPOSE

To understand the technology application and tool kits for grid computing

INSTRUCTIONAL OBJECTIVES

- 1. To understand the genesis of grid computing
- 2. To know the application of grid computing
- 3. To understand the technology and tool kits for facilitating grid computing

UNIT I - INTRODUCTION AND OVERVIEW OF GRID COMPUTING (9 hours)

Early Grid Activities-Current Grid Activities-An Overview of Grid Business Areas-Grid Applications-Grid Infrastructure

UNIT II - WEB SERVICES AND RELATED TECHNOLOGIES (9 hours)

Service – Oriented Architecture-Web Service Architecture-XML, Related Technologies, and Their Relevance to Web services-XML Messages and Enveloping-Service Message Description Mechanisms-Relationship between Web Service and Grid Service – Web Service Interoperability and the Role of the WS-I Organization

UNIT III - DISTRIBUTED OBJECT TECHNOLOGY FOR GRID COMPUTING (OGSA) (9 hours)

Introduction to Open Grid Services Architecture(OGSA)- Commercial Data Center-National Fusion Collaboratory- The OGSA Platform Components 96

UNIT IV - OPEN GRID SERVICES INFRASTRUCTURE (OGSI) (9 hours)

Introduction-Grid Services-A High-Level Introduction to OGSI – Introduction to Service Data Concepts – Grid Service: Naming and Change Management Recommendations.

UNIT V - OGSA BASIC SERVICES AND THE GRID COMPUTING TOOLKITS (9 horurs)

Common Management Model(CMM)-Security Architecture- GLOBUS GT3 Toolkit: Architecture- GLOBUS GT3 Toolkit: - Architecture, Programming model, High level services .

REFERENCES

- 1. Joshy Joseph & Craig Fellenstein, "Grid Computing", Pearson/PHI PTR-2003.
- 2. Ahmar Abbas, "Grid Computing: A Practical Guide to technology and Applications", Charles River media 2003.
- 3. http://www.cs.uiowa.edu/~jni/GC/
- 4. The TeraGrid: http://www.teragrid.org
- 5. The NSF Middleware initiative: http://www.nsf-middleware.org
- 6. The Globus Project: http://www.globus.org
- 7. The Grid Portal Toolkit (Grid Port): http://www.gridport.net
- 8. The Open Grid Computing Environments Consortium: http://www.ogce.org

- 9. The GridSphere Project: http://www.gridsphere.org
- 10. IBM Grid Pages: http://www-1.ibm.com/grid/

11. Univeristy of Texas UT Grid: http://utgrid.utexas.edu

	NATURAL LANGUAGE UNDERSTANDING	L	Т	Р	С
CS2112	Total Contact Hours - 45	3	0	0	3
632112	Prerequisite				
	Nil				

PURPOSE

This course provides a thorough understanding of Natural language processing techniques

INSTRUCTIONAL OBJECTIVES

1. To learn basics of Speech technology, parsing

- 2. To understand the semantic analysis of speech
- 3. To study the machine translation principles

UNIT I – INTRODUCTION

Regular Expressions and Finite State Automata – Morphology and Finite State Transducers

UNIT II – COMPUTATIONAL PHONOLOGY

Computational Phonology and Text to speech - N-grams: Counting words in Corpora – Simple N- grams – Smoothing – Entropy

UNIT III – HMMS AND SPEECH RECOGNITION

HMMS and Speech Recognition: Speech Recognition Architecture – Overview of HMM – Advanced Methods for decoding – Training a speech Recognizer – Human Speech Recognition - Part of Speech Tagging: Rule Based, Stochastic Part-of-Speech Tagging – Transformation Based Tagging-Context Free Grammars for English – Context Free Rules and Trees – Sentence Level Constructions-Coordination – Agreement – Grammars and Human Processing

UNIT IV – PARSING

Parsing with Context Free Grammars – Top down Parser – Problems with Basic Top Down Parser – Finite State Parsing Methods - Representing Meaning: Computational Desiderata for Representations – Meaning Structure of Language – First Order Predicate Calculus- Semantic Analysis: Syntax driven Semantic Analysis – Attached

(9 hours)

(9 hours)

(9hours)

for a Fragment of English- Integrating Semantic Analysis into the Earley Parser, Robust Semantic Analysis

UNIT V – MACHINE TRANSLATION

(9 hours)

Dialogue and Machine Translation - Dialogue Acts – Automatic, Plan inferential, Cue based Interpretation of Dialogue Acts – Dialogue Structure and coherences – Dialogue Managers - Language Similarities and differences – The Transfer Metaphor – The Interlingua Idea- Direct Translation – Using Statistical Techniques – Usability and System Development

REFERENCES

- 1. D. Jurafsky and J. Martin , "Speech and Language Processing: An Introductionto Natural Language Processing, Computational Linguistics, and Speech Recognition", Pearson Education, 2004
- 2. C. Manning and H. Schutze , "Foundations of Statistical Natural LanguageProcessing", Massachusetts Institute of Technology, 2003.
- 3. James Allen "*Natural Language Understanding*" ,The Benajmins/Cummings Publishing Company Inc. 1994.

		DATA MINING CONCEPTS AND TECHNIQUES	L	Т	Ρ	С		
00	2113	Total Contact Hours - 45	3	0	0	3		
US	2113	Prerequisite						
		Nil						
PURPOSE								
This	course	e provides a complete overview of Data mining tech	niques	5				
INST	RUCT	IONAL OBJECTIVES						
1.	To un	o understand the concepts of Data Mining						
2.	To perform different data mining tasks							
3.	B. To study the applications of Data mining							

UNIT I – INTRODUCTION

Introduction to Data Mining – Kind of Data – Functionalities – Interesting Patterns – Task Primitives – Issues In Data Mining - Data Preprocessing: Why Preprocessing

UNIT II – ASSOCIATION RULES

(9 hours)

Mining Frequent Patterns: Associations And Correlations - Basic Concepts – Frequent Item Set Mining Methods – Mining Various Kinds Of Association Rules

UNIT III – CLASSIFICATION AND PREDICTION

Issues Regarding Classification and Prediction – Decision Tree Induction Classification – Bayesian, Rule Based Classification – Support Vector Machine

UNIT IV – CLUSTER ANALYSIS

What Is Cluster Analysis? Types Of Data In Cluster Analysis – A Categorization Of Major Clustering Methods – Hierarchical Methods

UNIT V – APPLICATIONS AND TRENDS IN DATA MINING

Applications and Trends in Data Mining: Data Mining Applications – Products And Research Prototypes – Additional Themes on Data Mining – Social Impacts of Data Mining

REFERENCES

- 1. Jiawei Han and Micheline Kamber, *"Data Mining Concepts and Techniques"*, Second Edition, Morgan Kaufmann Publishers, 2006.
- 2. M. H. Dunham, "Data Mining: Introductory and Advanced Topics", Pearson Education. 2001.
- 3. D. Hand, H. Mannila and P. Smyth, "*Principles of Data Mining*", Prentice-Hall. 2001.
- 4. I H. Witten and E. Frank, "Data Mining: Practical Machine Learning Tools and Techniques", Morgan Kaufmann. 2000.

		WIRELESS SENSOR NETWORKS AND PROGRAMMING	L	т	Ρ	С
CS		Total Contact Hours - 45	3	0	0	3
		Prerequisite				
		Nil				
PURPOSE						
This course provides a broad coverage of challenges and research results related to						
the design and management of wireless sensor networks						
INSTRUCTIONAL OBJECTIVES						
1.	To und	derstand the concepts of sensor networks				
2.	To lear	rn how to program sensor motes				
3.	To und	derstand the challenging issues in each layer of sensor networks				

UNIT I - FUNDAMENTALS OF SENSOR NETWORKS

(9 hours)

(9 hours)

UNIT II - COMMUNICATION CHARACTERISTICS AND DEPLOYMENT MECHANISMS (9 hours) Wireless Communication characteristics - Link guality, fading effects, Shadowing, Localization, Connectivity and Topology - Sensor deployment mechanisms, Coverage issues, Node discovery protocols.

UNIT III - MAC LAYER

Fundamentals of Medium access protocol- Medium access layer protocols - Energy efficiency, Power allocation and Medium access control issues.

Introduction and Overview - Overview of sensor network protocols, architecture, and applications. Challenges, Main features of WSNs: Research issues and trends. Platforms-Standards and specifications-IEEE802.15.4/Zigbee, Hardware: Telosb. Micaz motes .Software: Overview of Embedded operating systems-Tiny OS.

UNIT IV - NETWORK LAYER AND TRANSPORT LAYER

Introduction to Simulation tools- TOSSIM, OPNET, Ns-2.

Network layer protocols-Data dissemination and processing, multichip and cluster based routing protocols- Energy efficient routing- Geographic routing, Transport layer-Transport protocol Design issues- Performance of Transport Control Protocols.

UNIT V - MIDDLEWARE AND SECURITY ISSUES

Middleware and Application layer -Data dissemination, Data storage, Query processing, Security -Privacy issues, Attacks and Countermeasures

REFERENCES

- WaltenegusDargie, Christian Poellabauer, "Fundamentals of Wireless 1 SensorNetworks, Theory and Practice", Wiley Series on wireless Communication andMobile Computing, 2007.
- KazemSohraby, Daniel manoli, "Wireless Sensor networks-2. Technology, Protocols and Applications", Wiley InterScience Publications 2010.
- 3. BhaskarKrishnamachari, "Networking Wireless Sensors", Cambridge University Press, 2005.
- C.S Raghavendra, Krishna M.Sivalingam, Taiebznati, "Wireless 4. SensorNetworks", Springer Science 2004.,

	SERVICE ORIENTED ARCHITECTURE	L	Т	Ρ	С	
CS2115	Total Contact Hours – 45	3	0	0	3	
	Prerequisite					
	Nil					
PURPOSE						

(9 hours)

(9 hours)

To learn the fundamentals and techniques of Service Oriented Architecture

INSTRUCTIONAL OBJECTIVES

1 Service Oriented Architecture Concepts

2. Web Services and Service Orientation

3. Service Oriented Design

UNIT I - INTRODUCTION

Fundamental SOA-Common characteristics of contemporary SOA- Common misperceptions about SOA-Common tangible benefits of SOA- Common pitfalls of adopting SOA-The Evolution of SOA-An SOA timeline (from XML to Web services to SOA)- The continuing evolution of SOA (standards organizations and contributing vendors)- The roots of SOA (comparing SOA to past architectures)-Web Services and Primitive SOA- The Web services framework- Services (as Web services)-Service descriptions (with WSDL)-Messaging (with SOAP).

UNIT II - WEB SERVICES AND CONTEMPORARY SOA INTRODUCTION AND (9 hours) ISSUES

Message exchange patterns- Service activity-coordination-Atomic transactions-Business activities-Orchestration-Choreography-Addressing- Reliable messaging-Correlation-Policies- Metadata exchange- Security- Notification and eventing

UNIT III - SOA AND SERVICE-ORIENTATION

Principles of Service-Orientation-Service-orientation and the enterprise- Anatomy of a service-oriented architecture- Common principles of service-orientation- How service-orientation principles inter-relate-Section-Service-orientation and objectorientation- Native Web service support for service-orientation principles-Service Layers-Service orientationandcontemporary SOA- Service layer abstractionapplication service layer-Business service layer- Orchestration service layer-Agnostic services- Service layer configuration scenarios.

UNIT IV - BUILDING SOA (PLANNING AND ANALYSIS)

SOA Delivery Strategies- SOA delivery lifecycle phases- The top-down strategy- The bottom-up strategy- The agile strategy- Service-Oriented Analysis - Introduction service-oriented analysis- Benefits of a business-centric SOA- Deriving business services-Service-Oriented Analysis- Service modeling (a step-by-step process)-Service modeling guidelines- Classifying service model logic- Contrasting service modeling approaches (an example)

UNIT V - SERVICE-ORIENTED DESIGN

Introduction to service-oriented design- WSDL-related XML Schema language basics-WSDL language basics- SOAP language basics- Service interface design tools-Steps SRM-M.Tech.-CSE-2018

(9 hours)

(9 hours)

(9 hours)

to composing SOA-Considerations for choosing service layers and SOA standards, positioning of cores and SOA extensions -Overview-Service design of business service, application service, taks centric service and guidelines - Service-Oriented Design (Business Process Design)-WS-BPEL language basics-WS-Coordination overview- Service-oriented business process design (a step-by-step process).

REFERENCES

- 1. Thomas Erl , "Service-Oriented Architecture: Concepts, Technology& Design", Pearson Education Pvt. Ltd 2008.
- 2. Thomas Erl, "SOA Principles Of Service Design", Pearson Education, 2007.
- 3. Tomas Earl and Grady Booch," SOA Design Patterns", Prentice Hall 2008.

	CLOUD COMPUTING	L	Т	Ρ	С		
00011/	Total Contact Hours - 45	3	0	0	3		
CS2116	Prerequisite						
	Nil						
PURPOSE							
This course impart wide knowledge on cloud services, cloud management and cloud							
virtualization technologies							
INSTRUCTIONAL OBJECTIVES							
1 To understand cloud services and solutions							

1. To understand cloud services and solutions

2. To know about cloud virtualization technologies and cloud management

3. To understand the relevance of Cloud, SOA and benchmarks

UNIT I – **INTRODUCTION (9 hours)** Introduction - Essentials - Benefits - Business and IT Perspective - Cloud and Virtualization -Cloud Services Requirements - Cloud and Dynamic Infrastructure -

Cloud Computing Characteristics - Cloud Adoption. Cloud Models - Cloud Characteristics - Measured Service - Cloud Models - Security in a Public Cloud - Public versus Private Clouds - Cloud Infrastructure Self Service.

UNIT II – CLOUD SERVICES AND SOLUTIONS

(9 hours)

Gamut of Cloud Solutions - Principal Technologies - Cloud Strategy - Cloud Design and Implementation using SOA - Conceptual Cloud Model - Cloud Service Defined. Cloud Solutions - Introduction - Cloud Ecosystem - Cloud Business Process Management - Cloud Service Management - Cloud Stack - Computing on Demand (CoD) – Cloudsourcing.

UNIT III – CLOUD OFFERINGS AND CLOUD MANAGEMENT (9 hours)

Cloud Offerings - Information Storage, Retrieval, Archive and Protection - Cloud Analytics - Testing under Cloud - Information Security - Virtual Desktop Infrastructure - Storage Cloud.Cloud Management - Resiliency - Provisioning - Asset Management -Cloud Governance - High Availability and Disaster Recovery - Charging Models, Usage Reporting, Billing and Metering

UNIT IV- CLOUD VIRTUALIZATION TECHNOLOGY

(9 hours)

Virtualization Defined - Virtualization Benefits - Server Virtualization - Virtualization for x86 Architecture - Hypervisor Management Software - Logical Partitioning (LPAR) - VIO Server - Virtual Infrastructure Requirements - Storage virtualization - Storage Area Networks - Network-Attached storage - Cloud Server Virtualization - Virtualized Data Center

UNIT V - CLOUD, SOA AND INFRASTRUCTURE BENCHMARKING (9 hours)

SOA and Cloud - SOA Defined - SOA and IaaS - SOA-based Cloud Infrastructure Steps - SOA Business and IT Services. OLTP Benchmark - Business Intelligence Benchmark - e-Business Benchmark - ISV Benchmarks Cloud Performance Data Collection and Performance Monitoring Commands Benchmark Tools.

REFERENCES

- 1. Kumar Saurabh, "Cloud Computing: Insights into New-Era Infrastructure", Wiley India, 2011.
- 2. John Rhoton, "Cloud Computing Explained: Implementation Handbook forEnterprises", Recursive Press, 2013.
- 3. George Reese, "Cloud Application Architectures: Building Applications and Infrastructure in the Cloud (Theory in Practice)", O'Reilly, 2009.

		TRUSTED COMPUTING	L	Т	Ρ	С	
CS2117	0117	Total Contact Hours - 45	3	0	0	3	
	211/	Prerequisitel					
		Ni					
PUR	POSE						
This	course	provides in-depth knowledge on trust computing in	netwo	orks			
INSTRUCTIONAL OBJECTIVES							
1. To learn the concepts of trust categories							
2.	To understand trust architecture and formalization of security properties						

3. To learn trusted computing and administration

UNIT I – INTRODUCTION

(9 hours)

Introduction – Trust and Computing – Instantiations – Design and Applications – Progression – Motivating scenarios – Attacks. Design goals of the trusted platform modules. Introduction to simulators – Implementation of attacks

UNIT II – ARCHITECTURE, VALIDATION AND APPLICATION CASE STUDIES (9hours)

Foundations – Design challenges – Platform Architecture – Security architecture – erasing secrets – sources – software threats – code integrity and code loading. Outbound Authentication – Problem – Theory – Design and Implementation -Validation – Process – strategy – Formalizing security properties – Formal verification – other validation tasks – reflection. Application case studies – Basic building blocks – Hardened web servers – Right's management for Big Brother's computer – Private Information – Other projects. TCPA/TCG

UNIT III – PROGRAMMING INTERFACES TO TCG

Experimenting with TCPA/TCG – Desired properties- Lifetime mismatch – Architecture – Implementation – Applications. Writing a TPM device driver- Low-level software – Trusted boot – TCG software stack – Using TPM keys. Implementation using simulator tools.

UNIT IV – TSS CORE SERVICE AND SECURE STORAGE (9 hours)

TSS core service – Public key cryptography standard – Architecture – Trusted computing and secure storage – Linking to encryption algorithms – encrypting files and locking data to specific PCs-content protection – secure printing and faxing. Simulation analysis of symmetric and public key cryptographic standards - performance evaluation of these trust models.

UNIT V- TRUSTED COMPUTING AND SECURE IDENTIFICATION (9 hours)

Trusted Computing and secure identification – Administration of trusted devices – Secure /backup maintenance – assignment of key certificates-secure time reporting-key recovery – TPM tools- Ancillary hardware.

REFERENCES

- Sean W.Smith, "Trusted Computing Platforms: Design and Applications". Springer Science and Business media, 2005.
- 2. Challener D., Yoder K., Catherman R., Safford D., Van Doorn L.. "A *PracticalGuide to Trusted Computing*". IBM press, 2008.
- Xujan Zhou, Yue Xu, Yuefeng Li, AudunJøsang, and Clive Cox. "The state-ofthe-art in personalized recommender systems for social networking". ArtificialIntelligence Review, Issue C, pp. 1-14, Springer, 2011.

SUPPORTIVE COURSES

MA2013		MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE	L	т	Ρ	С	
		Total Contact Hours - 45	3	0	0	3	
		Prerequisite					
		Nil					
PUR	POSE						
To ir	npart ar	alytical ability and to solve real life problems pertain	ning to	bran	ches o	of	
Com	puter S	cience and Engineering.	-				
INSTRUCTIONAL OBJECTIVES							
1.	1. To be exposed with logic						
2.	2. To be thorough in mathematical induction						
3.	. To understand algebraic systems such as relations						
4.	To be familiar with the basic concepts of lattices						

UNIT I – LOGIC

Logic - Statements - Connectives - Truth tables - Normal forms - Predicate calculus -Inference Theory for Statement calculus and predicate calculus.

UNIT II - COMBINATORICS

Combinatory - Mathematical Induction - Pigeonhole principle - Principle of inclusion and exclusion.

UNIT III - RECURSIVE FUNCTIONS

Recursive Functions- Recurrence relation - Solution of recurrence relation using characteristic polynomial and using generating function - Recursive functions -Primitive recursive functions, Computable and non computable functions.

UNIT IV - ALGEBRAIC STRUCTURES

Algebraic Structures - Groups - Definition and examples only - Cyclic groups Permutation group (Sn and Dn) - Subgroups - Homomorphism and Isomorphism -Cosets - Lagrange's Theorem - Normal subgroups - Cayley's representation theorem.

UNIT V – LATTICES

Lattices - Partial order relations, Poset - Lattices, Hasse diagram - Boolean algebra. REFERENCES

R., "Discrete Mathematical 1. Tremblay J.P. and Manohar Structures withapplications to Computer Science", McGraw Hill International Edition,

(9 hours)

(9 hours)

(9 hours)

(9 hours)

(9 hours)

41

(9 hours)

1987Kenneth H. Rosen, Discrete Mathematics and Its Applications, 4th Edition, Tata McGraw Hill, 2002.

- 2. Venkataraman M.K. etal., "Discrete Mathematics", National Publishing Co., 2000.
- 3. Prof. Sundaresan V., Ganapathy Subramanian K.S.andGanesan K., "DiscreteMathematics", New Revised Edition, 2001.
- 4. Alan Doerr and Kenneth Levasseur, "Applied Discrete Structures for ComputerScience", Galgotia Publications (P) Ltd., 1992.
- 5. Liu C.L., "*Elements of Discrete Mathematics*", 2nd Edition, McGraw Hill Publications, 1985.
- 6. Gersting. J.L., "*Mathematical Structures for Computer Science*", 3rd Edition, W.H. Freeman and Co., 1993.
- 7. Lidl and Pitz, "Applied abstract Algebra", Springer Verlag, New York, 1984.

	GRAPH THEORY AND OPTIMIZATION TECHNIQUES	L	т	Р	с			
MA2010	3	0	0	3				
	Prerequisite							
	Nil							
PURPOSE								
To develop	analytical capability and to impart knowledge				linear			

programming problem and statistical methods and their applications in Engineering & Technology and to apply their concepts in engineering problems they would come across

INSTRUCTIONAL OBJECTIVES

- 1. student should be able to understand graphs ,linear programming problems and statistical concepts.
- 2. Studentsproblems should be able to apply the concepts in solving the Engineering

UNIT I - BASICS OF GRAPH THEORY

Graphs - Data structures for graphs - Subgraphs - Operations on Graphs Connectivity – Networks and the maximum flow - Minimum cut theorem - Trees - Spanning trees - Rooted trees – Matrix representation of graphs.

UNIT II - CLASSES OF GRAPHS

Eulerian graphs and Hamiltonian graphs - Standard theorems - Planar graphs - Euler's formula - Five colour theorem - Coloring of graphs - Chromatic number (vertex and edge) properties and examples - Directed graphs

UNIT III- GRAPH ALGORITHM

(9 hours)

Computer Representation of graphs - Basic graph algorithms - Minimal spanning tree algorithm - Kruskal and Prim's algorithm - Shortest path algorithms - Dijsktra's algorithm - DFS and BFS algorithms.

UNIT IV - OPTIMIZATION TECHNIQUES

Linear programming – Graphical methods – Simplex method (Artificial variables not included) – Transportation and assignment problems.

UNIT V – STATISTICS

Tchebyshev's inequality – Maximum likelihood estimation – Correlation – Partial correlation – Multiple correlations.

REFERENCES

- 1. NarsinghDeo, "Graph Theory with Applications to Engineering and ComputerScience", PHI 1974.
- 2. Rao S.S., "Engineering Optimization: Theory and Practice", New Age International Pvt. Ltd., 3rd Edition 1998.

	STOCHASTIC PROCESSES & QUEUEING THEORY	L	Т	Р	С
MA2011	Total Contact Hours - 45	3	0	0	3
	Prerequisite				
	Nil				

PURPOSE

To impart knowledge on probability concepts to study their applications in stochastic processes & queueing theory

INSTRUCTIONAL OBJECTIVES

- 1. Compute the characteristics of the random variable given the probabilities
- 2. Understand and apply various distribution
- 3. Solve cases of different Stochastic processes along with their properties.
- 4. Use discrete time finite state Markov chains
- 5. Gain sufficient knowledge in principles of queueing theory

UNIT I - RANDOM VARIABLES

One dimensional and two dimensional Random Variables – Characteristics of Random Variables : Expectation, Moments.

UNIT II - THEORETICAL DISTRIBUTIONS

Discrete : Binomial, Poisson, Negative Binomial, Geometric, Uniform Distributions. Continuous: Uniform, Exponential, Erlang and Gamma, Weibull Distributions.

(9 hours)

(9 hours)

(9 hours)

Queuing System – PollaczekKhinchin formula.

REFERENCES

- 1. Kishore.S.Trivedi, "Probability & Statistics with Reliability, Queuing andComputer Science Applications", PHI, New Delhi, 1995.
- Veerajan T, "Probability, Statistics and Random Processes", 3rd Edition Tata McGraw Hill, New Delhi, 2002.
- 3. Gupta S.C and Kapoor V.K, "Fundamentals of Mathematical Statistics", 9th revised edition, Sultan Chand & Co., New Delhi 2003.
- 4. Gross.D and Harris.C.M. "Fundementals of Queuing theory", John Wiley and Sons, 1985.
- 5. Allen.A.O., "Probability, Statistics and Queuing Theory", Academic Press, 1981.

SEMESTER I

CA C2001	Career Advancement Course For Engineers - I	L	Т	Р	С		
CAC2001	Total Contact Hours - 30	1	0	1	1		
	Prerequisite						
	Nil						
PURPOSE							
To enhance holistic development of students and improve their							
employability skills							

INSTRUCTIONAL OBJECTIVES

1. To improve aptitude, problem solving skills and reasoning ability of the student.

44

2. To collectively solve problems in teams & group.

UNIT III - STOCHASTIC PROCESSES

Classification of Stochastic Processes – Bernoulli process – Poisson process – Pure birth process – Birth and Death process.

UNIT IV - MARKOV CHAINS

UNIT V- QUEUING THEORY

Introduction – Discrete-Parameter Markov Chains – Transition Probability Matrix – Chapman Kolmogorov Theorem – State classification and limiting distributions.

Introduction – Characteristics of Markovian Single server and Multi server queuing models [(M/M/1) : (∞ / FIFO), (M/M/1) : (N / FIFO), (M/M/s) : (∞ /FIFO)] – M/G/1

(9 hours)

(9 hours)

3. Understand the importance of verbal and written communication in the workplace

4. Understand the significance of oral presentations, and when they may be used.

5. Practice verbal communication by making a technical presentation to the class

6. Develop time management Skills

UNIT I-BASIC NUMERACY

⁽²⁾ Types and Properties of Numbers, LCM, GCD, Fractions and decimals, Surds

UNIT II-ARITHMETIC – I

② Percentages, Profit & Loss, Equations

UNIT III-REASONING - I

② Logical Reasoning

UNIT IV-SOFT SKILLS - I

② Presentation skills, E-mail Etiquette

UNIT V-SOFT SKILLS - II

② Goal Setting and Prioritizing

ASSESSMENT

Soft Skills (Internal)

Assessment of presentation and writing skills.

Quantitative Aptitude (External)

Objective Questions- 60 marks Descriptive case lets- 40 marks* Duration: 3 hours *Engineering problems will be given as descriptive case lets.

REFERENCE:

- 1. Quantitative Aptitude by Dinesh Khattar PearsonsPublicaitons
- 2. Quantitative Aptitude and Reasoning by RV Praveen EEE Publications
- 3. Quantitative Aptitude by AbijithGuha TATA Mc GRAW Hill Publications

4. Soft Skills for Everyone by Jeff Butterfield – Cengage Learning India Private Limited

5. Six Thinking Hats is a book by <u>Edward de Bono</u> - Little Brown and Company

6. IBPS PO - CWE Success Master by Arihant - Arihant Publications(I) Pvt.Ltd – Meerut

SEMESTER II

	Career Advancement Course For	L	Т	Р	С	
	Engineers - II					
C 4 C 2002	Total Contact Hours - 30	1	0	1	1	
CAC2002	Prerequisite					
	Nil					
PURPOSE						
To enhance holistic development of students and improve their						
employability skills						

INSTRUCTIONAL OBJECTIVES

1. To improve aptitude, problem solving skills and reasoning ability of the student.

- 2. To collectively solve problems in teams & group.
- 3. Understand the importance of verbal communication in the workplace
- 4. Understand the significance of oral presentations, and when they may be used.

5. Understand the fundamentals of listening and how one can present in a group discussion

6. Prepare or update resume according to the tips presented in class.

UNIT I-ARITHMETIC – II

② Ratios & Proportions, Mixtures & Solutions

UNIT II - MODERN MATHEMATICS

② Sets & Functions, Data Interpretation, Data Sufficiency

UNIT III – REASONING - II

② Analytical Reasoning

UNIT IV – COMMUNICATION - I

② Group discussion, Personal interview

UNIT V - COMMUNICATION - II

② Verbal Reasoning test papers

ASSESSMENT

Communication (Internal)

- □ Individuals are put through formal GD and personal interviews.
- □ Comprehensive assessment of individuals' performance in GD & PI will be carried out.

Quantitative Aptitude (External)

Objective Questions- 60 marks (30 Verbal +30 Quants) Descriptive case lets- 40 marks* Duration: 3 hours *Engineering problems will be given as descriptive case lets.

REFERENCES

- 1. Quantitative Aptitude by Dinesh Khattar PearsonsPublicaitons
- 2. Quantitative Aptitude and Reasoning by RV Praveen EEE Publications
- 3. Quantitative Aptitude by AbijithGuha TATA Mc GRAW Hill Publications

4. General English for Competitive Examination by A.P. Bharadwaj – Pearson Education

 English for Competitive Examination by Showick Thorpe - Pearson Education
 IBPS PO - CWE Success Master by Arihant - Arihant Publications(I) Pvt.Ltd -Meerut

7. Verbal Ability for CAT by Sujith Kumar - Pearson India

8. Verbal Ability & Reading Comprehension by Arun Sharma - Tata McGraw – Hill Education

SEMESTER III

		Career Advancement Course For	L	Т	Р	С	
		Engineers - III					
C	AC2003	Total Contact Hours - 30	1	0	1	1	
CA	AC2003	Prerequisite					
		Nil					
PURPOSE							
To d	levelop pr	ofessional skills abreast with contemporar	y teac	hing			
lear	ning meth	odologies					
INS	TRUCTIO	DNAL OBJECTIVES					
At t	he end of	the course the student will be able to					
1	acquire	knowledge on planning, preparing and desig	ning a l	learn	ing		
	program						
	1 0						
2		effective learning resources for active practic					
3	facilitate	e active learning with new methodologies and	d appro	bache	s		
4	create balanced assessment tools						
5	hone teaching skills for further enrichment						
	-						
UNIT I- DESIGN (2 hrs)							

Ø	Planning & Preparing a learning program.	(= == 5)
\odot	Planning & Preparing a learning session	
UNIT I	I – PRACTICE	(2 hrs)
\odot	Facilitating active learning	
Ø	Engaging learners	
UNIT I	II – ASSESSMENT	(2 hrs)
\odot	Assessing learner's progress	
\odot	Assessing learner's achievement	
UNIT I	V – HANDS ON TRAINING	(10 hrs)
\odot	Group activities – designing learning session	on
\odot	Designing teaching learning resources	
\odot	Designing assessment tools	
Ø	Mock teaching session	
UNIT	V – TEACHING IN ACTION	(14 hrs)
\odot	Live teaching sessions	
	48	SRM-M.TechCSE-2018

SRM-M.Tech.-CSE-2018

② Assessments

ASSESSMENT (Internal)

Weightage:

Design - 40% Practice - 40% Quiz - 10% Assessment - 10%

REFERENCES

Cambridge International Diploma for Teachers and Trainers Text book by Ian Barker - Foundation books Whitehead, Creating a Living Educational Theory from Questions of the kind: How do I improve my Practice? Cambridge J. of Education

AMENDMENTS

S.No.	Details of Amendment	Effective from	Approval with date