

Course Code	18ASC101T	Course Name	APPLIED EN	IGINEERING MECHANICS		ourse tegory	,	С				Pro	fessio	onal C	ore					L 3	T 1	P 0	C 4
Pre-requi Course			Co-requisite Courses	Nil			gress ourse		Vil														
Course Off	ering Department	Aerospace Engineerin	ng	Data Book / Codes/Stand	ards	Nil																	
	rning Rationale (CLI		•			Le	earnii	ng					Prog	ram L	earn	ing O	utcon	nes (l	PLO)				
CLR-1 ։ Լ	Itilize the concept of e	quilibrium of particles and ri	igid bodies			1	2	3		2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-3 : L CLR-4 : L CLR-5 : A CLR-6 : L	Itilize with the dynami Itilize with the dynami pply the concepts of i Itilize the concepts in	cs of particles	s related to space i tems dealing with fo	prces		Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)		Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	^o roject Mgt. & Finance	-ife Long Learning	- 1 - 0sc	2 - 0Sc	PSO – 3
CL 0-1 · 7	Determine the forces u	undor oquilibrium				2	<u>ம</u> 85	<u>血</u> 75	Ĺ		ă	- Ar	ž	Š	Ш	ш	Ĕ	ŏ -	4	Ξ	ě	ě	<u>č</u>
		nd determine moment of ine	ertia			2	85	75	ŀ		H	-	-	-	-	-	-	-	-	-	-	-	-
	/	cting on particle both kinetic				2	85	75	İ		H	Н	-	-	-	-	-	-	-	-	-	-	-
CLO-4 : [Determine the forces a	cting on rigid body both kine		S		2	85	75	ŀ	I H	-	-	-	-	-	-	-	-	-	-	-	-	-
	pplication of determin					2	85	75	ŀ		Н	-	-	-	-	-	-	-	-	-	-	-	-
CLO-6 : A	pply the concepts of t	fundamental mechanics and	I space mechanics	in real time applications		2	85	75	ŀ	I H	Н	Н	-	-	-	-	-	-	-	-	-	-	-

Durati	on (hour)	12	12	12	12	12
S-1	SLO-1	Fundamentals of mechanics- Classification of forces, Laws of mechanics.	Determination of centroids by integration, centroids of lines, areas and volumes.	Rectilinear motion-Uniform motion and Rectangular components of velocity	Kinematics of rigid bodies	Curvilinear motion: Projectile motion
3-1	SLO-2	Vector and vector operations problems	Determination of centroids by integration, centroids of areas	Rectilinear motion - Uniformly accelerated motion	Kinematics of rigid bodies: Linear translational motion	Projectile motion: Path of the projectile
S-2	SLO-1		Determination of centroids in composite areas	Curvilinear motion-Normal and tangential components	Kinematics of rigid bodies: Fixed axis rotation	Position and velocity of the projectile after a known time
5-2	SLO-2	Equilibrium on particles in 2D, Lami's Theorem, Free body diagram	Centroids of volumes, Centre of gravity	Curvilinear motion- Normal and tangential components	Kinematics of rigid bodies: Fixed axis rotation	Velocity, direction and time taken of the projectile after a known height
S-3	SLO-1	Action & Reaction, Equilibrium on particles in 2 D – Equations of Equilibrium	Pappus guildinus Theorem I	Curvilinear motion- Radial and transverse components	Kinematics of rigid bodies: relation between linear and rotation	Motion of particle projected horizontally
0-0	SLO-2	Forces in space	Pappus guildinus Theorem II	Curvilinear motion- Radial and transverse components	Kinematics of rigid bodies: relation between linear and rotation	Projected from inclined plane
S-4	SLO-1	Solving Problems	Solving Problems	Solving Problems	Solving Problems	Solving Problems
0-4	SLO-2	Solving Problems	Solving Problems	Solving Problems	Solving Problems	Solving Problems
0.5		Statics of rigid body in 2D – Moment & Varigon's Theorem	Moment of inertia	Cylindrical coordinates- Newtons second law, D'Alembert's principle.	General plane motion-Absolute and relative velocity in plane motion	Angular momentum of a particle. Rate Of change of angular momentum
S-5	SI 0-2	Statics of rigid body in 2D – Force Couple	Determination of moment of inertia by Integration	Cylindrical coordinates- Newtons second law, D'Alembert's principle.	General plane motion-Absolute and relative velocity in plane motion	Motion under a central force, Conservation of angular momentum.
	SLO-1	Equilibrium of Rigid bodies in 2D	Parallel axis theorem	Principle of work and energy	General plane motion: Crank- Rod Mechanism	Newton's Law of Gravitation
S-6		Equilibrium of Rigid bodies in 2D : Support Reactions, Types of Support	Parallel axis theorem	Principle of work and energy	General plane motion: Crank- Rod Mechanism	Sample problems: Conservation of angular momentum and newton's law of gravitation
S-7		Analytical method to determine the support reactions of beam	Perpendicular axis theorem	Principle of impulse and Momentum.	Instantaneous centre of rotation in plane motion	Sample problems: Conservation of angular momentum and newton's law of gravitation

SRM Institute of Science & Technology – Academic Curricula (2018 Regulations) - Control Copy

	SLO-2	Moment of Uniformly varying loads	Perpendicular axis theorem	Principle of impulse and Momentum.	Instantaneous centre of rotation in plane motion	Sample problems: Conservation of angular momentum and newton's law of gravitation
S-8	SLO-1	Solving Problems	Solving Problems	Solving Problems	Solving Problems	Solving Problems
3-0	SLO-2	Solving Problems	Solving Problems	Solving Problems	Solving Problems	Solving Problems
S-9	SLO-1	Truss: Classification, perfect/Imperfect frame, Analysis of perfect frame	Polar moment of inertia,	Impact of Elastic bodies	D'Alembert's principle : Linear motion	Trajectory of a particle under a central force
0-5	SLO-2	Determine the support Reaction in truss	Radius of gyration	Derivation of Elastic coefficient	D'Alembert's principle : Rotation motion	Trajectory of a particle under a central force: Application to space mechanics
S-10	SLO-1	Analysis of perfect Frame by method of joints: Simply supported	Mass moment of inertia of solid objects	Impact of Elastic bodies-Direct central	Principle of work and energy for a rigid body : Linear motion	Kepler Law of planetary motion
3-10	SLO-2	Analysis of perfect Frame by method of joints: Cantilever	Mass moment of inertia of solid objects	Impact of Elastic bodies-Direct central	Principle of work and energy for a rigid body: Rotation motion	Sample problems: Central force
S-11		Analysis of perfect Frame by method of sections: Simply supported	Mass Moment of inertia of thin plates	Impact of Elastic bodies- Oblique central impact.	Principle of impulse, momentum for plane motion of a rigid body: Linear motion	Sample problems: Central force
3-11	SLO-2	Analysis of perfect Frame by method of sections: Cantilever	Mass Moment of inertia of thin plates	Impact of Elastic bodies- Oblique central impact.	Principle of impulse, momentum for plane motion of a rigid body: Rotation motion	Sample problems: Periodic time
S-12	SLO-1	Solving Problems	Solving Problems	Solving Problems	Solving Problems	Solving Problems
3-12	SLO-2	Solving Problems	Solving Problems	Solving Problems	Solving Problems	Solving Problems
Learni Resou	•	Hill, 2013		tor Mechanics for Engineers: Statics and Dy. amics), Dorling Kindersley (India) Pvt. Ltd. (P	3. NPTELEN Guwabati	gineering Mechanics Lectures by IIT https://nptel.ac.in/courses/112103109/

Learning Ass	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evanination	(EOO) weightere)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	4 (10%)#	Final Examination	n (50% weightage)
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 % -		30%	-
	Total	10	0 %	100	0 %	10	0 %	10	0 %	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. S. Raja, National Aerospace Laboratories, Bangalore, raja@nal.res.in	1. Dr. K. M. Parammasivam, Madras Institute of Technology, Chennai, mparams@mitindia.edu	1. Mr. K. B. Ravichandrakumar, SRMIST
2. Dr. Vinay Kumar Gupta, National Physical Laboratory, guptavinay@nplindia.org	2. Dr. S. Elangovan, BIHER,Chennai, email : subelango@yahoo.co.in	2. Mr. lynthezhuthon, SRMIST

Cou Coo		18ASC102J Course Name		APPLIE	D FLUID MECHANICS			ourse egory	,	С				Profe	ession	nal Co	re			-	L 3	T 0	P 2	C 4
Co	equisite ourses e Offering	Nil Department Aerosp	ace Engineerir	Co-requisite Courses	Nil Data Book	/ Codes/Standards			gress ourse		Nil													
								_																
Course	e Learning	g Rationale (CLR): The pur	pose of learnir	ng this course is to:				Le	earnir	ng				F	Progra	am Le	arning	g Outco	omes ((PLO)				
CLR-1	: Identif	y the characteristics of fluids a	and utilize the p	pressure measuring	devices			1	2	3	1	2	3	4	5	6	7 8	89	10	11	12	13	14	15
		the basic fluid flow problems a			volume concept in variou	s fluid flow problems								~			₹							
		y the mathematical techniques						(m	(%	(%	a	ge nt ge ge inabil						×						
CLR-4		the basic dimensional analysis the basic concepts of bound						Bloc)cy (ent (°	wledg pmen Rese ge ustairi					stain	Wor		ance	_				
		e advanced level of fluid mecl					_	ing (licier	inme	Know alysis velop sign, Usac alture					s Su	eam	E	Ë	ning				
OLIV-0	. LAPIOI		names applicat	10113				hink	Prot	Atta	Anal- Anal- Anal- Anal- Tool I Tool I					ent 8	\$ T	catic	gt. &	Lea				
		g Outcomes (CLO): At the e						Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Enaineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO - 2	PSO - 3
		e the knowledge of fluid prope				ruments		2	85	75	Н		М	L	-	-		- L	-	-	M M	L	-	-
		te the fluid flow problems and the mathematical techniques of techniq			ept			2	85 85	75 75	H	H	M M	M M								L	-	-
		the dimensional analysis and						2	85 85	75	H H	H	M	M	-	-			-	-	M M	L	-	-
		e the knowledge about bounda						2	85	75	H	M	M	L	-	-				-	M	-	-	-
		e comprehensive knowledge in						2	85	75	H		M	M	-	-	-	- L	-	-	М	L	-	-
Duratio	on (hour)	15			15	15							15					15						
	SLO-1	Introduction to fluid mechanics	s	Lagrangian and Eu fluid flow	llerian description of	Pitot – tube				I	Dimensional Analysis						Piļ	Pipe friction major and Minor losses						
S-1 -	SLO-2	Brief history of fluid mechanic	s		streamlines, path lines,	Numerical problems				l	Rayleigh's	metho	od, nur	nerica	l prob	lems	Νι	ımerica	l probl	ems				
S-2	SLO-1	Fluids and their properties		System and Contro	ol volume concept	Introduction to potentia	l flow	,		l	Buckingha	m's Pi	i – theo	orem			Nı	ımerica	l Probi	lems i	n para	llel,		
5-2	SLO-2	Density, viscosity, surface ten	sion	Introduction to Rey	nolds transport theorem	Equation of streamline				l	Buckingha	m's Pi	i – theo	prem p	proced	lure	Se	eries an	d bran	ched	pipes.			
S-3	SLO-1	Properties of fluids numerical	problems	Reynolds transport		Stream function, Veloc	ity po	tential	funct		lumerical heorem	proble	ems on	Buck	inghai	m's Pi	⁻ Bo	oundary	layer	theory	intro	ductio	n	
0-0		applications									lumerical	•					Flu	uid flow	over k	odies	3			
S 4-5		Lab 1: Determine coefficient o of orifice meter	Ū	Lab 4: Repeat clas		Lab 7: Performance tes centrifugal air blower				(.ab 10: Pe entrifuga	air blo	ower				La flo	b 13: N w	lajor lo	ss du	e to fr	iction	in pip	Ð
S-6	SLO-1	Fluid statics-Pascal's law		in finite control volu		Uniform parallel flow st velocity potential functi	on			1	Application numbers	ns of ir	mporta	nt dim	ensio	nless	Flo	ow ovei	a flat	plate				
0-0	SLO-2	Numerical problems on Pasca	al's law	control volume ana problems	,	Source flow and sink fle and velocity potential fu			Numerical problems					oundary	,					late				
S-7	SLO-1	Hydrostatic law		Euler's equation of streamline	motion along a	Free vortex					low throu	gh pip	Des			Displacement thickn thickness				ickne	kness, momentum			
0-1	SLO-2	Piezometric head, and Numer	rical problems	Bernoulli's equation	n	Free vortex stream fun potential function	ction	and ve	elocity	ity Laminar and turbulent flow					Energy thickness									
S-8	SLO-1	Manometry- simple manomete	er		n - Numerical problems	Forced vortex				I	lagen - P	oiseuil	lle flow	in circ	cular p	oipes		ımerica						
Numorical problems on simple Numorical problems on Romoulli's					Combination of elemen	ntary f	lows		Hagen – Poiseuille equation displacement thickness, momentum thickness, Energy thickness				ım											

SRM Institute of Science & Technology – Academic Curricula (2018 Regulations) - Control Copy

S		Lab 2: Determine coefficient of discharge	Lab 5: Determine Impact force of water jet	Lab 8: Repeat class	Lab 11: Determine type of flow by	Lab 14: Performance test on reciprocating
9-10		of venturimeter	on vane	,	Reynolds apparatus	air compressor
S-11	3LU-1	manometer	Bernoulli's equation – Application venturimeter, orifice meter, pitot tube	Doublet flow	Hagen – Poiseuille equation applications	Drag on a flat plate
5-11	SLO-2	Numerical problems on U-tube differential manometer	Venturimeter discharge equation	Doublet flow stream function and velocity potential function	Numerical problems on viscous flow through pipes	Vonkarman Momentum integral equation
S-12	SL0-1	Differential manometer- Inverted U-tube differential manometer	Numerical problems on Venturimeter	Non-lifting flow over a cylinder	Development of flow in pipes Darcy- Weisbach equation	Separation of flow over bodies, streamlined and bluff bodies
3-12	902	Numerical problems on Inverted U-tube differential manometer	Numerical problems on Venturimeter	Pressure and velocity distributions	Pipe friction	Lift and Drag on cylinder
S-13		Inclined manometer	Orifice meter	Lifting flow over a cylinder	Numerical problems on Darcy-Weisbach equation	Lift and Drag on Aerofoil
3-13	SLO-2	Numerical problems on Inclined manometer	Orifice meter discharge equation, and numerical problems	pressure and velocity distributions	Numerical problems on Pipe friction	Lift and Drag on cylinder and Aerofoil Numerical problems
S 14-15	SLO-1 SLO-2	Lab 3: Verify Bernoulli's theorem	Lab 6: Minor losses due to pipe fittings in pipes	Lab 9: Performance test on backward centrifugal blower	Lab 12: Repeat class	Lab 15: Repeat class
Learn Resou	•		anics, 8 th ed., S. Chand, New Delhi, 2016 Okiishi, Theodore H., Huebsch, Wade W. Fi		es, Mechanics of Fluids, 4th ed., McGraw-Hill Bedford, K.W., Wylie, E. Benjamin, Fluid Me	

Learning Ass	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weigl	htage)			Final Examination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	(10%)#		r (50% weightage)			
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Lever	Understand	2070	20%	1570	1370	1370	1370	1370	1370	1370	1370
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Leverz	Analyze	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
Level 5	Create							1370	1370		
	Total	100)%	100	0%	100	0 %	100	0%	10	0%

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. S. Raja, National Aerospace Laboratories, Bangalore, raja@nal.res.in	1. Dr. S. Elangovan, BIHER,Chennai, email : subelango@yahoo.co.in	1. Mr. S. Rajkumar, SRMIST
2. Dr. Vinay Kumar Gupta, National Physical Laboratory, guptavinay@nplindia.org	2. Dr. K. M. Parammasivam, Madras Institute of Technology, Chennai, mparams@mitindia.edu	2. Mr. M. Abdur Rasheed, SRMIST

Course Code	18ASC103T	Course Name	AERO ENGINE	Ering Thermodynamics	Course Category	С	Professional Core	L 3	T 0	P 0	C 3
Pre-requisi Courses	INII		Co-requisite Courses	Nil	Progre Cour		Nil				
Course Offer	ring Department	Aerospac	e Engineering	Data Book / Codes/Standards	Nil	•					

Course Learning Rationale (CLR): The purpose of learning this course is to:	L	earni	ıg					Progr	am L	.earni	ng O	utcon	nes (F	PLO)			
CLR-1 : Identify the engineering and practical applications of Heat, Energy and Work	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14 15
CLR-2: Identify the applications of Thermodynamics on Engineering systems										У							
CLR-3: Identify the significance of Thermodynamic Laws	Ê		-				earch			abilit							
CLR-4: Create insights to the concepts of Entropy and Exergy	(Bloom)	y (%)	it (%)	dge		ent	s			Sustainability		Work		ge			
CLR-5: Analyze the working principle of Heat Energy driven systems	9 B	enc	men	Ne le	s	mqo	n, Re	Usage	ø	Sust				Finance	bu		
CLR-6: Utilize the Thermodynamic concepts in physics for the broad understanding of engineering and technology	⁻ hinking	oficiency	Attainment	Υ Υ	Analysis	Development	Design, I	S	Culture	∞ð		Team	ion	∞ŏ	aming		
	Ц Ц	5		ring	Aná	& De	, De	Tool	နှင	nen		8	licat	Mgt.	g Le		
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering Knowledge	Problem.	Design 8	Analysis,	Modern	Society &	Environment	Ethics	Individual	Communication	Project N	Life Long	PSO - 1	PSO - 2 PSO - 3
CLO-1: Identify the laws of Thermodynamics and its applications to Aerospace Engineering	2	80	70	Н	М	L	L	-	-	-	-	-	-	-	Н	-	
CLO-2: Comprehend the concept and applications of energy, entropy and exergy	2	80	70	Н	М	М	Μ	-	-	L	-	-	L	-	Н	М	M M
CLO-3: Understand various gas and vapor power cycles with applications	2	80	70	Н	М	L	М	-	-	-	-	L	-	-	Н	-	
CLO-4 : Understand the gas mixture behavior and chemical reactions	2	80	70	Н	М	М	М	-	-	М	М	М	М	L	Н	М	M M
CLO-5: Utilize the fundamental concepts for the physical understanding of engineering and technology			70	Н	М	М	М	М	L	L	-	L	М	L	H	М	M M
0-6 : Apply the Thermodynamic Principles to Aerospace Engineering Applications			70	Н	М	М	М	M	L	L	М	L	М	L	Η	M	M M

Duratio	on (hour)	9	9	9	9	9
S-1	SLO-1	Basic Concepts: Microscopic,macroscopic point of view, Path and point functions.	Limitations of first law of Thermodynamics. Introduction to Heat Reservoirs, Sources and Sinks	Limitations of Second Law of Thermodynamics	Role of Carnot cycle in Aerospace engineering	Mass fraction and mole fractions
	SLO-2	Intensive and extensive, total and specific quantities.	Heat Engine, Refrigerator, and Heat pump. Thermal efficiency of heat engines.	Explanation of the Concept of Entropy	Introduction to Otto cycle, Diesel cycle, Dual cycle	p-v-t behavior and properties of ideal gas mixtures
S-2	SLO-1	System and types. Zeroth law of thermodynamics, Thermodynamic equilibrium	Second law of Thermodynamics: C.O.P, Kelvin-Planck statement	Clausius inequality, T-s diagram	Indicator diagram Mean effective pressure	Dalton's law of partial pressures, Avogadro's law
5-2	SLO-2	Quasi-static, reversible and irreversible processes. Heat and work transfer, sign convention	Clausius statement of second law and equivalence of statements.	Entropy change for different processes.	Comparison of Otto, Diesel and Dual cycles, Air standard efficiency	Gibbs-Dalton law, enthalpy and specific heat of a gas mixtures
S-3	SLO-1	Solving Problems	Solving Problems	Solving Problems	Solving Problems	Solving Problems
3-3	SLO-2	Solving Problems	Solving Problems	Solving Problems	Solving Problems	Solving Problems
S-4	SLO-1	First law of Thermodynamics: First law for a closed system undergoing a cycle, concept of Internal energy, change of state	Reversible and irreversible processes- causes of irreversibility	Principle of increase of Entropy, Maxwell relations, T-ds Equations, Difference and ratio of heat capacities	Brayton cycle	Chemical reactions, Combustion, Stoichiometric coefficients, Air-Fuel ratio, Equivalence ratio
		Energy and Work Transfer in closed systems, P-V diagram, PMM1	Carnot Theorem and corollary	Energy equation, Joule Thomson Coefficient, Clausius-Clapeyron equation	Effect of Reheat, Regeneration and Intercooling	Combustion and Dissociation
S-5	SLO-1	Solving Problems	Absolute Thermodynamic Temperature scale	Solving Problems	Solving Problems	Solving Problems
3-3	SLO-2	Solving Problems	Carnot cycle and Performance	Solving Problems	Solving Problems	Solving Problems

S-6	SLO-1	First law for an Open system: Conservation of mass, energy, steady flow energy equation	Solving Problems	Entropy change of Ideal and Real gases	Turbine and Compressor efficiency	Aerospace Chemical Propulsion: Fuels in combustion
	SLO-2	Aerospace applications of SFEE to Nozzles, Diffusers	Solving Problems	Isentropic efficiencies of Aerospace steady flow devices	Factors affecting efficiency	Enthalpy of reaction, formation and combustion
S-7	SLO-1	Cases of turbine, compressor, boiler, pump	Engineering and Practical Applications of Second Law		Equivalent Carnot cycles: Stirling and Ericsson cycle, Humphrey cycle	Gravimetric and volumetric analysis
3-1	SLO-2	Heat exchanger and Throttling process		Available and non-available energy of a source and finite body	Interactive session with demo on practical working of Gas Power based Engines	Introduction to adiabatic flame temperature
S-8	SLO-1	Solving Problems	Solving Problems	Solving Problems	Solving Problems	Solving Problems
5-0	SLO-2	Solving Problems	Solving Problems	Solving Problems	Solving Problems	Solving Problems
S-9	SLO-1	Chapter Doubt clarification.	Chapter Doubt clarification.	Chapter Doubt clarification.	Chapter Doubt clarification.	Chapter Doubt clarification.
3-9	SLO-2	Chapter Doubt clarification.	Chapter Doubt clarification.	Chapter Doubt clarification.	Chapter Doubt clarification.	Chapter Doubt clarification.
		1. Nag, P. K, Engineering Thermodynamic	s, 6 th ed., Tata McGraw Hill, 2017	, occr 5. Michael Moran, J., Howard S	hapiro. N., Fundamentals of Engineering Th	ermodvnamics, 4 th ed., John Wilev & Sons,

Learning Resources	 Nag, P. K, Engineering Thermodynamics, 6th ed., Tata McGraw Hill, 2017 Rathakrishnan. E, Fundamentals of Engineering Thermodynamics, Prentice–Hall, India, 2005 Holman, J. P., Thermodynamics, 4th ed., Tata McGraw Hill, 2015 Rayner Joel, Basic Engineering Thermodynamics, 5th ed., Addison Wesley, 2016 	 Michael Moran, J., Howard Shapiro, N., Fundamentals of Engineering Thermodynamics, 4th ed., John Wiley & Sons, 2010 Yunus A. Cengel, Michael A. Boles, Thermodynamics an engineering approach, 7th ed., McGraw Hill, 2011 	
-----------------------	---	--	--

Learning Assess	sment										
	Bloom's			Contir	nuous Learning Asse	essment (50% weigh	ntage)			Einal Examination	n (50% weightage)
	Level of Thinking	CLA – 1	1 (10%)	CLA – 2	2 (15%)	CLA – 3	3 (15%)	CLA – 4	(10%)#		i (50% weightage)
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	40 %		30 %		30 %		30 %		30%	
Level	Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply	40 %		40 %		40 %		40 %	-	40%	
Level 2	Analyze	40 //	-	40 /0	-	40 /0	-	40 /0	-	4070	-
Level 3	Evaluate	20 %		30 %		30 %		30 %	-	30%	
Level 5	Create	20 %	-	30 78	-	30 %	-	30 %	-	3070	-
	Total	100)%	100)%	100)%	100	0 %	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Vinay Kumar Gupta, National Physical Laboratory, guptavinay@nplindia.org	1. Prof. D.P. Mishra, IIT Kanpur, mishra@ iitk.ac.in.	1. Dr. R. Vasudevan, SRMIST
2. Dr. S. Raja, National Aerospace Laboratories, Bangalore, raja@nal.res.in	2. Prof. Prasanta Kumar Das, IIT Kharagpur, pkd@mech.iitkgp.ernet.in.	2. Dr. T. Selvakumaran, SRMIST

Cou Co		18ASC104J Course Name	AIRCRAFT MATERIALS AND PRODUC	CTION TECHNIQUES	-	ourse tegor		С				Pro	fessio	nal C	ore					L 3		P 2	C 4
Co	requisite ourses e Offering	Nil Department Aerospace	Co-requisite Nil Courses Nil Engineering Da	ata Book / Codes/Standards			gress ourse		Nil														
Cours	e Learning	g Rationale (CLR): The purpos	e of learning this course is to:			L	.earni	ng					Prog	ram L	.earni	ng O	utcor	nes (l	PLO)				
CLR-1	: Identii	fy materials				1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2		the mechanical behavior of mate										ч			Ę								
CLR-3 CLR-4	: Utilize	the existing production technolog fying the selection of materials	lies			(mo	(%)	(%)	g	5	Ħ	searc			inabil		У		e				
CLR-5	: Identif	fy material's Application				(Blo	ency	nent		6	bme	, Res	age		usta		m Wo		nanc	b			
CLR-6		the experience of machining Tec	hniques for real-time applicaions			nking	rofici	ttainr	k K	alysi	evelc	sign	I Use	ulture	t & S		Tea	tion	& Fi	Leaming			
CLO-1 CLO-2	: Identif : Analy	fy materials and it properties ze the application of materials in c				C C Level of Thinking (Bloom)	52 58 B Expected Proficiency (%)		H H Ensinostina Kasuladas	H H	E · Design & Development	I · Analysis, Design, Research	H - Modern Tool Usage	Society & Culture	Environment & Sustainability	· · Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	· · Life Long L	PSO-1	PSO-2	PSO-3
		fy different treatments to strengthe fy different casting techniques	en materiais			2	75 85		F		H -	н -	- H	-	-	-	-	-	-	-	-	-	-
CLO-5		ze machining techniques				2	85	75	ŀ		Н	-	-	-	-	-	-	-	-	-	-	-	-
CLO-6	: Analy	ze forming Techniques				2	80	70	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Durati	on (hour)	15	15		15						15	5							1	5			
S-1		Introduction to materials, mechan properties	Heat Treatment	Casting Introduction				٨	Nechanic	al worl	king of	Mate	rials		I	Mach	ining	Proce	SS				
0-1	SLO-2	Fixed-wing aircraft structures	Purpose of Heat Treatment	Basic Terms				li	ntroducti	on to n	nechar	nical V	Vorkin	ig	I	ntrod	uctior	n to M	lachir	ies			
S-2	SLO-1	Classification of aircraft materials	Principles of Heat Treatment	Casting Procedure				ŀ	lot Work	ng					l	athe							
3-2	SLO-2	Materials used for aircraft compo	nents Stages of Heat Treatment	Casting Nomenclatu	re			C	Cold Wor	king					l	athe	Com	poner	nts, to	ools			
S-3	SLO-1	Helicopter structures	Stages of Heat Treatment, Descript	otion Sand Casting				ŀ	lot Work	ng- Fo	rging				١	Norki	ing of	Lathe)				
3-3		Space shuttle structures	Types of Heat treatment	Making of Sand Cas risering System	ting, Ga	ating a	and	F	orging T	ypes, l	orgin	g Def	ects		(Opera	tions	in La	the, t	ools			
S 4-5	SLO-1 SLO-2	Lab 1: Step Turning	Lab 4: Drilling and Boring	Lab 7 Surface Grind	ing			L	.ab 10: 3	Spur G	əar Mi	lling			l	_ab 1	3: Th	read (Cuttin	g			-
• •	SLO-1	Materials used in jet engines	Heat treatment of carbon steel	Special Casting Proc	cess			F	Rolling, T	/pes o	f Rolliı	ng, Ro	olling l	Mills	l	Drillin	g Ma	chine,	Туре	es of D	Drilling	mac	nine
S-6	SLO-2	Light weight material for MAV/UA	V. Procedures of Heat treatment of ca	arbon Special casting proc	ess			F	Rolling D	fects					(Opera	ations	, Tool	ls use	ed in D	rilling	Macł	nine
S-7	SLO-1	Super alloys.	Heat treatment of - aluminum alloys	rs, Expandable Mold Ca	asting			Ľ	Drawing						:	Shape	er Ma	chine					
3-1	SLO-2	Application of Composite materia	Is Procedures of Heat treatment of - aluminum alloys,	Shell Mold Casting				Ľ	Drawing	ypes					(Opera	tions						
• •	SLO-1	Introduction to smart materials,	Heat treatment of titanium alloys.	Investment Casting				E	Extrusion						(Quick	retur	n Med	chani	sm			
S-8	SLO-2	Shape memory alloys	Procedures of Heat treatment of tita alloys	anium Investment Casting I	Process	5		E	Extrusion	Types					I	Mech	anisrr	n Deta	ail				

SRM Institute of Science & Technology – Academic Curricula (2018 Regulations) - Control Copy

S 9-10	SLO-1 SLO-2	Lab 2: Taper Turning	Lab 5: Shaper	Lab 8 Cyli	ndrical Grinding	Lab 11:Helical Gear Milling	Lab 14: Slotting
S-11	SLO-1	Advanced structure ceramic	Heat treatment of Magnesium alloys.		t Mold Casting, Die Casting, I Casting, Casting Defects	Sheet Metal Operations, Shearing Operations	Slotter machine, mechanisms, Grinding Machines
3-11	SLO-2	intermetallics, Ni and Ti aluminide	Procedures of Heat treatment of Magnesium alloys	Casting D	efects	Types of Shearing Dies	Cutting Tools in Grinding Machines
S-12	SLO-1	Introduction to FRP,	Case Hardening	Welding Ir	troduction	Forming Operations	Operations in Grinding Machines
3-12	SLO-2	Glass and Carbon Composites	Procedures of Case Hardening	Gas Weld	ing, Arc Welding	Forming Operations	Types of Grinding Machines
	SLO-1	Aerospace Applications – Plastics and Rubber.	Stress reliving Procedures	Laser Beam Welding		Cutting Tools in sheet metal Process	Milling
S-13	SLO-2	Emerging trends in Aerospace materials,	Protective Treatments	Electron B Resistanc	eam Welding, Electric e Welding	Striking Tools in Sheet Metals, Riveting	Milling Operations, Types of Milling Machines
S 14-15	SLO-1 SLO-2	Lab 3: Taper boring	Lab 6: Drilling, Reaming & Tapping	Lab 9: Gro	ooving and Knurling	Lab 12: External keyway cutting	Lab 15:Gear hobbing
Learni Resou	•	 Adrian P. Mouritz, Introduction to aero Dieter, G. E., Mechanical Metallurgy, 	ospace materials, Woodhead Publishing Limi McGraw Hill, Singapore, 2001	ted, 2012		K, Aircraft production technique, Interline Pub ook of Production Technology, 8 th ed., S. CH	

Learning Ass	essment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examination	(E00/ waightaga)
	Level of Thinking	CLA –	1 (10%)	CLA – 2 (15%)		CLA –	3 (15%)	CLA – 4	(10%)#		n (50% weightage)
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Total	100) %	100	0 %	10	0 %	10	0 %	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Vinay Kumar Gupta, National Physical Laboratory, guptavinay@nplindia.org	1. DrSrinivasa Rao Bakshi, IITM, Chennai, sbakshi@iitm.ac.in	1. Mr. N Bharat, SRMIST
2. Dr. S. Raja, National Aerospace Laboratories, Bangalore, raja@nal.res.in	2. Dr. Ramesh Babu, N , nrbabu@iitm.ac.in	2. Mr. K B Ravichandra kumar, SRMIST

Course Code	18ASC105T	Course Name	AIRCRAF	SYSTEMS AND INSTRUMENTS	-	ourse tegory		С				Proi	fessior	nal Co	ore				L 3	T 0	P () 3
Pre-requi Course	es ^{IVII}		Co-requis Courses	INII			gress ourse	sive es	Nil													
Course Off	ering Department	Aerosp	ace Engineering	Data Book / Codes/Standa	rds	Nil																
Course Lea	arning Rationale (CL	R): The pur	pose of learning this course	is to:		Le	arniı	ng					Progra	am L	earning	Outco	mes ((PLO)				
CLR-1: /	dentify the type of cor	ntrol system ar	nd its components used in ai	craft.		1	2	3	1	2	3	4	5	6	7 8	9	10	11	12	13	14 1	15
			ories of hydraulic & Pneumat									_			ţ							
			various system operations in			Ê	(%	(%)				Design, Research			Sustainability	×						
				stem and other auxiliary system of an airplane.		300	ر. ح	nt (°	200	5 5 5	nent	lese			itain	Work		Finance				
			nts and their functions.			l) gr	cien	me		sis is	lopr	ц, Е	sage	e		Team	-	Fina	eaming			
CLR-6 : (Jtilize the knowledge	acquired for d	esign, development & mainte	nance of aircraft & aero engine systems.		Thinking (Bloom)	rofi	Attainment (%)	2	aly:	& Development	lesiç	이이	& Culture	nt &	š Te	atior	∞ŏ	earr			
Course Lea	arning Outcomes (Cl	L O): At the e	end of this course, learners w	ill be able to:		Level of Th	Expected Proficiency (%)	Expected	Contracting Knowlodge	Problem Analysis	Design & D	Analysis, D	Modern Tool Usage	Society & (Environment Ethics	Individual &	Communication	Project Mgt.	Life Long L	PS0-1		PSO-3
			control system in an airplan			2	80	70	F		L	L	L	-		-	-	-	L	L	MI	М
			I pneumatic system of moder			2	80	70	ŀ		М	L	М	-		-	-	-	-	М	MI	М
			ns of piston and gas turbine e			2	80	70	ŀ		L	L	М	-		-	-	-	L	М		Μ
				ms and auxiliary systems of aircraft.		2	80	70	ŀ		L	L	L	-	M M	-	-	-	L	М		Μ
			eration of various aircraft ins			2	80	70	H		L	L	М	-		-	М	-	L	Н	ΗI	М
CLO-6: A	Acquire comprehensiv	ve knowledge (of aircraft systems, engine sy	stems and its instrumentation.		2	80	70	ŀ	L	L	L	М	-	M M	-	М	-	L	М	MI	М

Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	Need for Control Systems	Introduction to Hydraulic Systems	Introduction to Aircraft Engines	Introduction to Cabin Environmental Control Systems	Introduction to Aircraft Flight Instruments
0-1	SLO-2	Conventional Flight Controls.	Applications & Advantages	Types, Abnormal Combustion	Need for Aircraft Pressurization System	Types
S-2		Components of Conventional Flight Control System and their functions	Selection & Classification of Hydraulic Fluids	Introduction to Aircraft Fuel System	Principle of Air Cycle Cooling System	Principle of Air Data Instruments
0-2	SLO-2	Push Pull rod System	Open Centre & Closed Centre System	Types of Fuel & Fuel System Components	Operation & Advantages	Operation of Altimeter
• •	SLO-1	Cable Pulley System	Components of Hydraulic System and its functions	Gravity Feed Fuel System	Principle of Vapour Cycle Cooling System	Operation of Air Speed Indicator
S-3	SLO-2	Disadvantages of Mechanical Control System.	Automatic Operating Control Valves	Pressure Feed Fuel System	Its Operation & Advantages	Operation of Vertical Speed Indicator
S-4	SLO-1	Challenges in Power Assisted Flight Control System	Study of Typical Hydraulic System for Modern Jet Airliner	Need for Lubrication System	Need for Cabin Heating System	Principle of Gyroscopic Instruments
3-4	SLO-2	Q – Feel System	Operation and its Advantages	Functions and Characteristics of Lubricating Oil.	Types & Operation	Operation of Attitude Indicator
о <i>г</i>	SLO-1	Servo Tabs	Aircraft Brake System	Types of Lubrication System, Wet Sump System	Need for Aircraft Oxygen System	Operation of Turn Coordinator
S-5	SLO-2	Fully Powered Flight Control System for heavy aircraft	Types and Applications	Dry Sump System and their Advantages	Types & Advantages	Operation of Heading Indicator
S-6	SLO-1	Fly by Wire System (FBW)	Introduction to Pneumatic Systems	Need For Ignition System	Components of Oxygen System	Principle & Operation of Engine Instruments – Tachometer & EGT
3-0	SLO-2	Operation of FBW & its Advantages	Applications & Advantages	Types of Ignition Systems	Its Operation	Principle & Operation of EPR, CHT & Manifold Pressure Gauge

S-7	SLO-1	Digital Fly by Wire System (DFBW)	Study of Typical Pneumatic System for Modern Airliner	Magneto Ignition System & its Operation	Introduction to Fire Detection Systems	Principle & Operation of Electronic Instruments – EADI & EHSI
3-1	SLO-2	Operation of DFBW & its Advantages	Operation and its Advantages	Components of Ignition System of Gas Turbine Engine	Requirements for Fire Detection System	Principle & Operation of Electronic Systems Monitor Displays
S-8	SLO-1	Need for Automatic Flight Control Systems	Introduction to Landing Gear System	Need for Starting System	Types	Principle & Operation of EICAS
3-0	SLO-2	Operation of Autopilot System	Classification of Landing Gear System	Types of starters	Principle and Operation	Need for Instrument Landing System (ILS)
S-9	SLO-1	Auto Throttle System (ATS)	Lomponents of Landing Laear System	Pneumatic Starting System for Modern airliner	Need for Anti-Icing & De-Icing System	Components of ILS and their functions
3-9	SLO-2	Advantages of ATS	Applications	Advantages of Pneumatic Starting System	Types and Applications.	Advantages
Learn Reso	•	subsystems integration, 3 rd ed., Profes 2. E.H.J.Pallet, Aircraft Instruments, 2 rd	tems – Mechanical, Electrical and Avionics sisonal Engineering Publishing Limited, 2008 ad.,Pearson Publishing Company, 2009 dbook – Airframe, Vol.2, U.S.Dept. of Transp Standards Service, 2012	Administration, Flight Stand 5. Michael J.Kroes, William A. bortation, 6. Irwin Treager, Aircraft Gas		e and Repair, 7 th ed., Tata McGraw Hill, 2013

Learning Asse	essment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weigl	htage)			Final Examination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	4 (10%)#		n (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	40 %		30 %		30 %		30 %	_	30%	
Lever	Understand	40 /0	-	30 76	-	30 %	-	30 %	-	3076	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total		0 %	100) %		0 %	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Wg.Cdr K.Manoharan (Retd), Blue Dart Aviation Ltd., manoharank@bluedart.com	1. Dr. A. P. Haran, Park College of Engineering & Technology, ap_haran@rediffmail.com	1. Dr. S. Sivakumar, SRMIST
2. Dr. Raja S, CSIR-NAL, Bangalore, raja@nal.res.in	2. Dr. K. M. Parammasivam, Madras Institute of Technology, Chennai, mparams@mitindia.edu	2. Mr. G. Mahendra Perumal, SRMIST

Course Code	18ASC201J	Course Name		APPLIE	D SOLID ME	ECHANICS		ourse tegory		С				Pro	fessic	onal C	ore					L 3		P 2	C 4
Pre-requi	18ASC1011			Co-requisite Courses	Nil				gress ourse		Nil														
Course Off	ering Department	Aerosp	ace Engineering	g		Data Book / Codes/Standards		Nil																	
	rning Rationale (CL	, ,	, ,	y this course is to:		ubjected to different loads		Le	earnir	ng 3		4 0	2	4	Prog	ram L	_earn	ing O	utco	mes (I	PLO)	10	13	14	15
							da	- 1	Z	ა	-	1 2	3	4	5	0	1	0	9	10		12	15	14	10
CLR-3 : // CLR-4 : // CLR-5 : //	Know the variation of o	curvature of b s and disadva racteristics o	eams subjected antages of using f column for vari	to loads based or solid and hallow ous end condition	n which the s shafts, differe s and stress	us beams subjected to different loa slope, deflection calculations be ma ent springs for different loads es generated in thin and thick cyline	de	Thinking (Bloom)	l Proficiency (%)	d Attainment (%)		ing Knowledge	Levelopment	Design, Research	Tool Usage	k Culture	nent & Sustainability		il & Team Work	ication	lgt. & Finance	J Leaming			

CLK-0.	Now the behavior of unerent structural materials for unerent types of loading	Think	l Prof	i Atta	ring K	Analy	Deve	Desi		& Cult	nent 8		al & Te	icatio	fgt. &	j Lear			
Course L	earning Outcomes (CLO): At the end of this course, learners will be able to:	Level of .	Expected	Expected	Engineer	Problem	Design 8	Analysis,	Modern -	Society 8	Environn	Ethics	Individua	Commun	Project N	Life Long	PSO-1	PSO-2	PSO-3
CLO-1 :	Differentiate a ductile material and a brittle material after performing a tension test	2	80	70	H	H	-	-	-	-	-	-	-	-	-	-	-	-	-
CLO-2 :	Analyze the shear force and bending diagrams in cantilever and simply supported beams	2	80	75	Н	Н	-	Н	-	-	-	-	-	-	-	-	-	-	-
CLO-3 :	Make calculations for the design of a beam based on the bending stress and desired deflection	2	75	70	Н	Н	Н	Н	-	-	-	-	-	-	-	-	-	-	-
CLO-4 :	Design the shaft for a particular torque transmission and springs for energy absorption	2	80	75	Н	Н	Н	Н	-	-	-	-	-	-	-	-	-	-	-
CLO-5 :	Find the planes of principal stresses in a stressed model and hoop stress, longitudinal stress in thin walled pressure vessel	2	85	75	Н	-	Н	-	-	-	-	-	-	-	-	-	-	-	-
CLO-6 :	Calculate the various stresses generated in a particular element subjected to different loading	2	80	70	Н	Н	Н	Н	-	-	-	-	-	-	-	-	-	-	-

Durati	on (hour)	15	15	15	15	15
S-1	SI ()-1	Concept of stress and strain in a bar element	Hardness and Strength	Relation between deflection, slope, radius of curvature	Theory of pure torsion	Stresses on inclined planes
3-1	SLO-2	Hooke's law, Poisson's ratio, Elastic young's modulus	Ductility and brittleness	Shear force and bending moment Derivation explanation for different loads	Explain shear stress variation in a circular (solid and hollow)	Derivation explanation
S-2	SLO-1	True and Engineering stress strain curve for ductile material in tension, compression	Difference between static loading and dynamic loading	Find slope and deflection in a cantilever beam by double integration method	Apply torsion equation based on allowable shear stress	Mohr's circle derivation
3-2	SLO-2	True and Engineering stress strain curve for a brittle material in tension	Impact loading	Problem solving	Apply torsion equation based on allowable angle of twist	Plane stress case
S-3		Concept of shear stress, shear strain and Rigidity modulus	Statically Determinate structure, examples	Find slope and deflection in a simply supported beam by double integration	Compare solid and hollow shafts for transmission of same torque	Mohr's circle construction
3-3	SLO-2	Principle of complementary shear	Statically Indeterminate structure, examples	Problem solving	Applications explanation	Procedure to different kinds of load
S 4-5	SLO-1 SLO-2	Lab1: Tension test	Lab-4: Brinell Hardness Test and Vickers hardness test	Lab-7: Deflection test in a cantilever beam with a point loads	Lab-10: Torsion test on a circular rod using digital torsion testing machine	Lab 13: Charpy Impact test and Izod impact test
S-6	SI ()-1	Biaxial and triaxial state of stress and volumetric strain	Beam, types of beams, types of load	Find slope and deflection in a simply supported beam by Macaulay's method	Explain shear stress variation in closed coil helical sprigs	Concept of pure shear, relation between Young's, Shear and bulk modulus
3-0	SLO-2	Problem solving	Procedure of solving a beam	Problem solving	Applications	Derivation explanation
		Analysis of prismatic bar subjected to single load	Shear force and bending moment diagram and their sign convention	Moment Area Theorem-I	Explain shear stress variation in open coil helical springs	Numerical solving
S-7	SLO-2	Analysis of prismatic bar subjected to varying loads	Shear force and bending moment diagram for a cantilever beam subjected to point load and UDL	Application to cantilever and simply supported beam	Numerical explanation	Numerical solving
S-8		Analysis of non-prismatic bar subjected to single load	Shear force and bending moment diagram for a simply supported beam subjected to	Moment Area Theorem-II	Stiffness of closed coil helical spring	Fatigue load-Explanation

			point load			
	SLO-2	Analysis of non-prismatic bar subjected to varying loads	Shear force, bending moment diagram for a simply supported beam subjected to UDL	Application to cantilever and simply supported beams	Stiffness of open coil helical spring	S-N curve for various materials
S 9-10	SLO-1 SLO-2	Lab-2: Compression test	Lab-5: Repeat	Lab-8: Deflection test: Simply supported beam	Lab-11: Tension test on a closed coil helical spring	Lab-14: Determine endurance limit of the given material by performing a fatigue test.
S-11	SLO-1	Analysis of composite bars	Shear force and bending moment diagram for a overhanging beam	Principle of superposition	Shaft subjected to combined bending and torsion	Thin walled pressure vessel subjected to internal pressure
0-11	SLO-2	Numerical solving	Point of contraflexure	Application	Derivation	Hoop stress explanation
S-12	SLO-1	Thermal stresses-Support Yield	Explanation of bending stress variation in a beam subjected to pure bending	Maxwell reciprocal theorem	Strain energy due bending	Thin walled cylindrical pressure vessel
0-12	SLO-2	Numerical Solving	Application	Application	Derivation	Longitudinal stress explanation
S-13	SLO-1	Thermal stresses-composite bars	Explain shear stress variation in a beam of symmetrical and unsymmetrical cross sections subjected to bending	Explain shear force diagram of an aircraft wing	Strain energy due torsion	Thick cylinder
	SLO-2	Problem solving	Application	Explain bending moment diagram of an aircraft wing	Derivation	Lame's theory
S 14-15	SLO-1 SLO-2	Lab-3: Study of magnified images obtained using Inverted Metallurgical Microscope on a specimen.	Lab-6: Rockwell Hardness Test	Lab-9:Repeat	Lab-12: Compression test on an open coil helical spring	Lab-15 :Repeat

1. Ferdinand P.Beer, Rusell Johnston, John T.Dewolf, Mechanics of Materials, SI Metric, 3rd ed., Tata McGraw-Hill Learning Education, 2011 Resources 2. Egor P. Popov., Engineering Mechanics of Solids, 2nd ed., Prentice Hall of India, 2009

James M. Gere, Mechanics of Materials, 8th ed.,Brooks/Cole, USA, 2013
 Shigley, J. E., Applied Mechanics of Materials, International Student Edition, McGraw Hill, 2000

5.

V Ecodosvov	Strength of Materials,	MID Dublichoro	Magaaw 1069
v. 1 60003y6v.	ouengui oi materiais,		1003000 1300

Learning As	sessment										
	Bloom's			Cont	inuous Learning Ass	essment (50% weig	phtage)			Einal Examinatio	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	4 (10%)#		ii (50% weiginage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 3	Evaluate Create	10%	10% 10% 15% 15% 15% 15% 15%		15%	15%	15%				
	Total	10	0 %	10	0%	10	0 %	10	0 %	1(0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Raja S, CSIR-NAL, Bangalore, raja@nal.res.in	1. Dr. K. M. Parammasivam, Madras Institute of Technology, Chennai, mparams@mitindia.edu	1. Mr. S. Chandra Sekhar, SRMIST
2. Wg.Cdr K.Manoharan (Retd), Blue Dart Aviation Ltd., manoharank@bluedart.com	2. Dr. A. P. Haran, Park College of Engineering & Technology, ap_haran@rediffmail.com	2. Mr. K B Ravichandra kumar, SRMIST

Course	18ASC202J	Course		Course	0	Drofossional Cara	L	Т	Ρ	С
Code	10A30202J	Name	INCOMPRESSIBLE AEROD I NAMICS	Category	C	Protessional Core	3	0	2	4

Pre-requisite Courses	18ASC102J		Co-requisite Courses	Nil		Progressive Courses	Nil
Course Offering	Department	Aerospace Engineering			Data Book / Codes/Standards	Nil	

Course Learning Rationale (CLR): The purpose of learning this course is to:				Learning Program Learning Outcomes (PLO)													
CLR-1 : Identify and utilize the lift generating devices	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14 15
CLR-2: Evaluate the forces and moments acting on aero foils and wings under ideal flow conditions.										2							
CLR-3: Evaluate and optimize the aerofoil characteristics	Ê						arch			Sustainability							
CLR-4 : Evaluate and optimize the wing characteristics.	(Bloom)	y (%)	ıt (%)	dge		ent	ese			aina		Work		g			
CLR-5: Evaluate and optimize the propeller characteristics.	8	roficiency	Attainment	Ne	s	Development	ı, Re	age	e	Sust				Finance	bu		
CLR-6: Evaluate and optimize the aerodynamic interaction effects between different components of aircraft	nking	ofici	tain	L N	Analysis	velo	Design,	S	Culture	~ŏ		Team	ion	& ⊤	earning		
	Ę.	dPr		ing	Ana	& De	De.	Tool Usage	လူလ	nen		~ŏ	licat	Agt.			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expecter	Expected	Engineering Knowledge	Problem.	Design 8	Analysis,	Modern .	Society &	Environment	Ethics	Individual	Communication	Project Mgt.	Life Long	PSO - 1	PSO - 2 PSO - 3
CLO-1: Understand the lift generation and lift generating devices	1	80	75	М	М	М	Ĥ	М	-	-	-	-	-	-	М	-	Η -
CLO-2: Analyze the forces and moments acting on aero foils and wings under ideal flow conditions.	2	80	75	Н	Н	Н	Н	Н	-	-	-	-	-	-	Н	-	Η -
CLO-3: Analyze the aerofoil characteristics.	3	70	60	Н	Н	Н	Н	Н	-	-	-	-	-	-	Н	-	Н -
CLO-4: Analyze the wing characteristics.	3	70	60	Н	Н	Ĥ	H	Н	-	-	-	-	-	-	Н	-	Н -
CLO-5 : Analyze the propeller characteristics.		70	60	Н	Н	Н	Н	Н	-	-	-	-	-	-	Н	-	Η -
CLO-6 : Analyze the aerodynamic interaction effects between different components of aircraft		70	65	Н	Н	Н	Н	Н	-	-	-	-	-	-	Н	-	Η -

Durat	on (hour)	15	15	15	15	15
S-1	SLO-1	Introduction to aerodynamics	Center of pressure	High lift devices	torque grading and efficiency equation	Influence of taper and twist applied to wings
3-1	SI 0-2	Introduction to the mathematical model of flow	Aerodynamic center	Thin airfoil theory-Flapped airfoil - circulation equation	Combined blade element and momentum theories velocity comparison	effect of sweep back and delta wings
S-2	SLO-1	Airfoil geometry	Numerical problems on Center of pressure	Thin airfoil theory-Flapped airfoil - coefficient of lift and moment	Comparison of thrust and torque equation	Fundamentals of potential flows
5-2	SLO-2	Airfoil nomenclature	Numerical problems on Aerodynamic center	Geometry of the propeller	Axial flow factor equation	Indirect and direct methods of mathematical model of flow
S-3	SLO-1	Wing geometry parameters	Numerical problems on Center of pressure and Aerodynamic center	Forces acting on Propeller	Angular flow factor equation	Basic equations of potential flow
3-3	SLO-2	Application of wing geometry parameters	Experimental characteristics of airfoil	Types of Propeller	The Biot-savart law	Introduction to panel methods
S	SLO-1	Lab 1: Introduction to subsonic wind tunnel	Lab 4: Study of flow over streamlined body by laser beam assisted smoke visualization		Lab 10: Pressure distribution and Estimation of forces acting over a rough	Lab 13: Estimation of forces acting over a streamlined body using force balance
4-5	SLO-2		technique	flow visualization technique	cylinder	method
S-6	510-1	Vortex motions, vortex filament, vortex sheet	Thin airfoil theory assumptions and limitations.	Propeller arrangements	Application of Biot-savart law	Source panel method
3-0	SLO-2	Vortex types, Starting vortex, trailing edge vortex	Fundamental equation of thin airfoil theory	Axial momentum theory assumptions and limitations.	Introduction of Prandtl's lifting line theory	Application of Source panel method
S-7	SLO-1	kutta's and kelvins theorem	Thin airfoil theory- symmetrical airfoil – circulation equation	Pressure and velocity distribution across the propeller control volume	Governing equations of Prandtl's lifting line theory	Vortex panel method
3-1	SLO-2	Kutta – Joukowski theorem	Thin airfoil theory- symmetrical airfoil – coefficient of lift and moment	Propeller thrust equation	Applications of Prandtl's lifting line theory	Application of Vortex panel method

			location of forces	Propeller power equation	circulation equation	Wing- fuselage interference
s SL	SLO-2	bound and horseshoe vortex	Numerical problems on thin airfoil theory		Prandtl theory- Elliptical lift Distribution – downwash and induced angle	Wing-engine interference
	SLO-1	Lab 2: Wind tunnel measurement	Lab 5: Study of Magnus effect using		Lab 11: Pressure distribution and	Lab 14: Estimation of pressure distribution
~~~		techniques	rotating cylinder by laser beam assisted smoke visualization technique.		Estimation of forces acting over a sphere model	acting over a symmetrical / unsymmetrical airfoil for different angle of attack
	SLO-1	Aerodynamic forces	Thin airfoil theory- unsymmetrical airfoil- circulation equation		Prandtl theory- Elliptical lift Distribution- coefficient of lift and induced drag	Wing-landing gear interference
<b>S-11</b> SL	SLO-2	Aerodynamic moments	Thin airfoil theory- unsymmetrical airfoil – verification of circulation equation		Fundamentals of Prandtl theory- General lift Distribution	Wing – propeller interference
SL	SLO-1	Types of drag	Thin airfoil theory- unsymmetrical airfoil – coefficient of lift		Prandtl theory- General lift Distribution- circulation equation	Wing –tail interference
<b>S-12</b> SL	SLO-2	Numerical problems on Aerodynamic forces	Thin airfoil theory- unsymmetrical airfoil – coefficient of moment and location of forces		Prandtl theory- General lift Distribution- coefficient of lift and induced drag	interference flow over an airplane as a whole
SL S-13	SLO-1	Numerical problems on Aerodynamic forces and moments	Numerical problems on thin airfoil theory	Basic equation of thrust and torque grading	Lift slope relation	Passive Laminar flow control methods
	SLO-2	Numerical problems on Aerodynamic forces and moments	Numerical problems on thin airfoil theory	thrust grading equation	Numerical problems on Lift slope relation	Active Laminar flow control methods
S SL	SLO-1	Lab 3: Study of flow over bluff body by	Lab 6: Study of flow over a tapered finite	Lab 9: Pressure distribution and Estimation	Lab 12: Estimation of forces acting over a	Lab 15: Estimation of forces acting over a
14-15 _{SL}	SLO-2	laser beam assisted smoke visualization technique	wing without wingtip by laser beam assisted flow visualization technique	of forces acting over a smooth cylinder	bluff body using force balance method	symmetrical / unsymmetrical airfoil for different angle of attack

Learning Resources 1. Houghton, E, L., Carruthers, N, B., Aerodynamics for Engineering Students, 6th ed., Edward Arnold Publishers Ltd., London, 2012 2. Anderson, J,D., Fundamentals of Aerodynamics,6th ed., McGraw Hill, 2016

3. Clancy, L, J., Aerodynamics, Pitman, 1986

^{4.} Milne, L.H., Thomson, Theoretical Aerodynamics, Dover, 1985

Learning As	sessment												
	Bloom's				Final Examination	n (50% weightage)							
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#		n (50% weightage)		
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%		
Level I	Understand	20%	2076	1370	1370	1370	1370	1370	1370	1570	1370		
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
Leverz	Analyze	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070		
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%		
Level 5	Create	1076	1076	1370	1370	1370	1370	1370	1370	1370	1370		
	Total	10	0 %	10	) %	100	0 %	10	0 %	100 %			

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Raja S, CSIR-NAL, Bangalore, raja@nal.res.in	1. Dr. K. M. Parammasivam, Madras Institute of Technology, Chennai, mparams@mitindia.edu	1. Mr. R. Mohamed Arif, SRMIST
2. Wg.Cdr K.Manoharan (Retd), Blue Dart Aviation Ltd., manoharank@bluedart.com	2. Dr. P. K Dash, Nitte Meenakshi Institute of Technology, Bangalore, drpdash@gmail.com	2. Mr. K B Ravichandra kumar, SRMIST

Course Code	18ASC203T	Course Name		AIR BRE	ATHING PROPULSION		ourse tegory	,	С	Professional Core				T 0	P 0	C 3								
Pre-requis Courses	s ^{/////}			Co-requisite Courses	Nil		C	gress ourse																
Course Offe	ering Department	Aeros	pace Engineering	g	Data Book / Codes/S	standards	Nil																	
Course Lea	rning Rationale (CLR	): The pu	rpose of learning	g this course is to:			L	earnir	ng					Progr	ram L	earn	ing O	utcor	nes (F	PLO)				
	lentify the working prin						1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-3 :         D           CLR-4 :         D           CLR-5 :         U           CLR-6 :         U	esign of inlets, combu- esign of compressors lesign of turbines in ga Inderstand the principle Inderstand the working <b>rning Outcomes (CLC</b>	in gas turbi s turbine pr e of operatio principles o	ne propulsion sy opulsion system on of Pulse jet, F of gas turbine pro	stems s RAMJET and SCR opulsion systems	AMJET engines		L evel of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	² roblem Analysis	Design & Development	Analysis, Design, Research	Aodern Tool Usage	Society & Culture	invironment & Sustainability	Ethics	ndividual & Team Work	ommunication	Project Mgt. & Finance	ife Long Leaming	SO - 1	oSO - 2	-SO-3
CLO-1: A	nalyze the performanc	e and com	onent efficiencie	es of gas turbine p	ropulsion systems		2	80	70	Ĥ	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	nalyze inlets, combust						2	85	75	Н	Н	Н	-	-	-	-	-	-	-	-	-	-	-	-
	nalyze the compresso						2	75	70	Н	-	-	Н	-	-	-	-	-	-	-	-	-	-	-
	nalyze the turbines in				-		2	85	80	Н	Н	-	-	-	-	-	-	-	-	-	-	-	-	-
	nalyze the performanc						2	85	75	Н	-	Н	-	-	-	-	-	-	-	-	-	-	-	-
CLO-6 : A	nalyze the performanc	e and comp	oonent efficiencie	es of gas turbine p	ropulsion systems		2	80	70	Н	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	Introduction to Air breathing engines	Inlets	Compressor	Turbine	Pulse Jet Engine-Operating Principle
3-1	SLO-2	Ideal and actual Brayton cycle	Classification of Inlets	Classification of compressors	Classification of turbines	RAMJET Engine
S-2	SLO-1	Turbojet Engine	Subsonic Inlets	Axial flow compressor	Axial flow turbine stage	Working of RAMJET
5-2	SLO-2	Numerical Problems on turbojet engine	Supersonic Inlets	Work and compression ratio	Velocity triangles and Power output	Working of RAMJET
•	SLO-1	High bypass turbofan Engine	Modes of Inlet operation	Degree of reaction	Blade Element theory	RAMJET with afterburner
S-3	SLO-2	Low bypass turbofan engine	Starting problems and Shock swallowing methods	Characteristic performance of a single stage axial compressor	Blade Element theory	RAMJET with afterburner
S-4	SLO-1	Numerical Problems on turbofan engine	Numerical Problems on Inlets	Charactoristic porformance of a multistage	Free vortex theory	RAMJET performance
5-4	SLO-2	Numerical Problems on turbofan engine	Numerical Problems on Inlets	Cascading of axial compressor- Compressor efficiency	Free vortex theory	RAMJET performance
S-5	SLO-1	Turboshaft engine	Gas turbine combustion chamber	Numerical Problems on Single stage Axial flow compressor	Limiting Factors of gas turbine design	Numerical Problems on RAMJET
3-0	SLO-2	Turboprop engine	Types of combustion chamber	Numerical Problems on Single stage Axial flow compressor	Limiting Factors of gas turbine design	Numerical Problems on RAMJET
S-6	SLO-1	Numerical Problems on turboprop engine	Fuel injector- Flame Tube cooling	Numerical Problems on multi stage Axial flow compressor	Turbine performance	SCRAMJET Engine
3-0	SLO-2	Numerical Problems on turboprop engine	Flame Stabilization-Flame holders	Numerical Problems on multi stage Axial flow compressor	Turbine blade cooling	Working principle of SCRAMJET Engine

	-	SLO-1	Typical engine performance	Nozzle	Centrifugal compressor	Turbine blade cooling methods	Problems faced in supersonic combustion
S		SLO-2	Typical engine performance	Classification of nozzles	Working Principle of a centrifugal compressor	Turbine and compressor matching	Problems faced in supersonic combustion
s	-	SLO-1	Methods of thrust augmentation	Numerical Problems on Nozzles.	Work and compression ratio	Numerical Problems on Axial flow turbine	Numerical Problems on SCRAMJET
3	-	SLO-2	Methods of thrust augmentation	Numerical Problems on Nozzles.	Work and compression ratio	Numerical Problems on Axial flow turbine	Numerical Problems on SCRAMJET
	-	SLO-1	Introduction to Air breathing engines	Inlets	Compressor	Turbine	Pulse Jet Engine-Operating Principle
3	SLO-2		Ideal and actual Brayton cycle	Classification of Inlets	Classification of compressors	Classification of turbines	RAMJET Engine

	1.	Hill, P. G., Peterson, C. R., Mechanics and Thermodynamics of Propulsion, 2 nd ed., Addison-Wesley
Learning		Publishing Company, 1992.
Resources	2.	Cohen. H. Rogers. G.F.C., Saravanamuttoo. H.I.H., Gas turbine theory. 4th ed., Pearson education
	3.	V.Ganesan., Gas Turbines, 3rd ed., Tata McGraw-Hill Education, 2010

Rolls-Royce , Jet Engine Manual, 3rd edition, 1983
 Oats, G.C., Aerothermodynamics of Aircraft Engine Components, AIAA Education Series, 1985
 Mattingly, J.D., Heiser, W.H., Pratt, D.T., Aircraft Engine Design, AIAA Education Series, 2002

Learning Asse	ssment											
	Diagonia				Final Examination	(EO0/ weighters)						
	Bloom's Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA – 3	3 (15%)	CLA – 4	(10%)#	Final Examination	n (50% weightage)	
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	40 %		30 %		30 %		30 %		30%		
Level I	Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-	
Level 2	Apply	40 %		40 %		40 %		40 %		40%		
Leverz	Analyze	40 /0	-	40 /0	-	40 /0	-	40 /0	-	40%	-	
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%		
Level 5	Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-	
	Total	100	0 %	10	0%	100	) %	100	0%	100 %		
	a francian ( complimation	a af the a a . A a a immune	ante Cominene Tee	L Talles Mist Desia	to 0 0to dia 0 -	If Ohish MOOOS C	antifications Conf. 1	Danas ata				

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Raja S, CSIR-NAL, Bangalore, raja@nal.res.in	1. Dr. P. K Dash, Nitte Meenakshi Institute of Technology, Bangalore, drpdash@gmail.com	1. Mr. G. Saravanan, SRMIST
2. Wg.Cdr K.Manoharan (Retd), Blue Dart Aviation Ltd., manoharank@bluedart.com	2. Dr. K. M. Parammasivam, Madras Institute of Technology, Chennai, mparams@mitindia.edu	2. Mr. G. Mahendra Perumal, SRMIST



Course Code	18AUC201J	Course MANUF	ACTURING TECHNC	DLOGY FOR AUTOMOTIVE E	NGINEERS	Course Category	С	Professional Core	L 3	T 0	P 2	C 4
Pre-requisite Courses	Nil			Nil		Progre		Nil				
Course Offerin	g Department	Automobile Engineer	ring	Data Book / Coo	les/Standards	Nil						

ourse Learning Rationale (CLR): The purpose of learning this course is to:			ng					Prog	am L	earni	ing O	utcor	nes (F	PLO)			
CLR-1: Utilize knowledge of various manufacturing processes and machine tools and also familiarize the process parameters	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14 15
CLR-2: Utilize the work and tool holding devices										у							
CLR-3: Identify the various surface finishing process and coating techniques							arch			abilit							
CLR-4 : Produce Prismatic Components and Gears	(mool		it (%)	Knowledge		ent	Se			ustainability		Work		ge			
CLR-5: Compare various surface finishing operations	a (Blo	roficiency	Attainment	wle	s	& Development	ı, Re	Usage	Ð	Sust		2		Finance	ning		
CLR-6: Utilize different welding, casting processes, shaping, forming, machining and surface finishing processes	Thinkina	ofici	tain	Knc	Analysis	velo	esign,	I Us	Culture	∞ŏ		Team	tion	∞ŏ	arni		
	Ц.	<u>с</u>		ring	Ana	De	De.	Tool	s C	neni			licat	Mgt.	g Le		
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering I	Problem	Design 8	Analysis	Modern .	Society &	Environment	Ethics	Individual &	Communication	Project N	Life Long	PSO - 1	PSO - 2 PSO - 3
CLO-1: Apply different welding and casting process.	2	85	75	Н	М	Н	L	Н	М	М	Н	Н	М	L	Н	Н	Н Н
CLO-2: Compare various shaping and forming process	2	80	75	Н	М	Н	Н	Н	М	М	Н	Н	М	L	М	Н	H H
CLO-3: Solve problems on cutting forces, tool life and analytical methods of estimating cutting temperature	2	90	85	Н	Н	Н	Н	L	М	М	Н	М	М	М	Н	Н	H M
CLO-4 : Produce Prismatic Components and Gears	2	85	80	Н	М	Н	Н	Η	Н	Н	H	Н	Н	М	Н	Н	H H
CLO-5 : Compare various surface finishing operations	2	80	75	Н	М	М	M	Η	Н	Н	H	Н	Н	М	Н	Н	H H
CLO-6 : Apply different welding, casting processes, shaping, forming, machining and surface finishing processes			75	Н	М	H	L	Н	М	М	H	Ĥ	М	L	Η	Η	H H

		Welding and Casting	Shaping and Forming	Machining of Axi-Symmetrical Components	Machining of Prismatic Components and Gear Manufacturing	Surface Finishing and Treatments
Durati	on (hour)	15	15	15	15	15
S-1	SLO-1	Introduction to welding, Basics, Classifications	Forging - Introduction	Introduction - Machining	Introduction – Milling machine & types	Introduction – Finishing operations
5-1	SLO-2	Material properties, material selection and Manufacturing process	Forging Processes and Defects	Theory of Metal Cutting	Milling cutters and work holding device	Grinding machine – Surface, Cylindrical – External, Internal, Centreless
	SLO-1	Arc Welding – working principle and types	Rolling – Blooms, Billets, slabs	Mechanics of chip formation and types of chips	Milling operation and indexing	Grinding wheel types and specifications
S-2	SLO-2	Working principles of MIG welding	Rolling – Billets, slabs	Calculation of cutting force and temperature in cutting.	Operating parameters- cutting speed, feed rate, depth of cut.	Grinding Operating parameters – surface finish, accuracy attainable by various process
S-3	SLO-1	Working principles of TIG welding	Forces and Geometrical relationship in rolling	Cutting tool materials – Tool life calculation,	Material Removal rate, Accuracy, Surface roughness	Lapping – process - application
3-3	SLO-2	Friction and Friction Stir Welding	Types of Rolling Mills	Cutting tool materials - Tool Wear	Drilling Machine – Types, Process Capabilities	Honing – process - applications
S 4-5	SLO-1 SLO-2	Lab 1: Facing, Turning and Step turning	Lab 3: External thread cutting	Lab 5: V block shaping	Lab 7: Milling – Spur Gear	Lab 9: Cylindrical Grinding
• •	SLO-1	Welding defects	Rolling Defects	Tool signature for single point cutting tool	Drill types and reaming operations	Buffing – process - applications
S-6	SLO-2	Casting introduction, Pattern Materials, Types, allowance	Extrusion process – types	Tool signature for multi-point cutting tool.	Broaching- Principle, Tool Nomenclature	Deburring – Shot blasting
0.7	SLO-1	Expandable mold- sand,	Extrusion process – defects	Lathe machine – Bench Lathe	Types of Broaching machine	Deburring –Abrasive flow machining
S-7	SLO-2	Expandable mold- shell	Wire and tube drawing – types and its defects	Lathe machine – Capstan and turrent	Gear Forming process-Extrusion, Stamping	Shot peening process and its application

S-8	SLO-1	Expandable mold-Investment	Drawing force Calculation			Super finishing process- cylindrical micro honing
3-0	SLO-2	Permanent mold – Pressure die casting, Centrifugal casting	Sheet metal operations – shearing, slitting,	Specification and chip collection system	(zear Hopping - Axiai	Super finishing process- centreless micro honing
S 9-10	SLO-1 SLO-2	Lab 2: Taper Turning	Lab 4: Radial Drilling	Lab 6: Gear Hobbing – Helical Gear	Lab 8: Surface Grinding	Lab 10: Slotting - keyway
S-11	SLO-1	Design of runner, riser,	Sheet metal operations - fine blanking, perforating	Cutting fluids and machinability	Gear Hobbing - Tangential	Polishing: Chemical Mechanical polishing
5-11	SLO-2	Design of gating and sprue	Bending – types and defects	Work and tool holding devices	Gear Hobbing - Radial	Electro-chemical polishing
6.40	SLO-1	Solidifcation time, Shrinkage allowances	Bending Load calculations	Surface machining – external	0 11	Protective and Decorative coatings – Material selection
S-12	SLO-2	Casting Defects	Stretch forming, Deep drawing.	Surface machining – internal	Gar Shaning - I vhas and working principla	Protective and Decorative coatings – Process
S-13	SLO-1	Application of Casting in Automotive Industries.	Ironing, seaming process	Design consideration in turning operation	Gar Shaning_Advantages and Demorits	Protective and Decorative coatings – Coating techniques
3-13	SLO-2	Application of Welding in Automotive Industries.	Hydroforming.	Material Removal rate and cutting forces	Tooling and selection of cutting parameters for gears.	Protective and Decorative coatings – Applications
S 14-15	SLO-1 SLO-2	Lab: Assessment 1	Lab: Assessment 2	Lab: Assessment 3	Lab: Repeat class	Lab: Mini Project

Learning	<ol> <li>Seropkalpakjian, Steven Schmid, Manufacturing Engineering and Technology, 7th ed., Pearson Education, 2013</li> </ol>
Resources	2. Mikel P Groover, Fundamentals of Modern Manufacturing, 4th ed., John Wiley and Sons, 2009

P N Rao, Manufacturing Technology – Machining and Machine tools, Vol. 2, 3rd ed., Tata Mc Graw Hill, 2017
 P N Rao, Manufacturing Technology – Foundry forming and Welding, Vol. 1, 4th ed., Tata Mc Graw Hill, 2013
 Sharma P C, A Text Book of Production Technology - Manufacturing Processes, S Chand & Company, New Delhi

Learning Asse	essment												
	Bloom's		Continuous Learning Assessment (50% weightage)								n (50% weightage)		
		evel of Thinking CLA – 1 (10%) CLA – 2 (15%) CLA – 3 (15%)		CLA – 2 (15%)		CLA –	3 (15%)	CLA – 4	(10%)#		i (50% weightage)		
	Level of Thinking			Practice	Theory	Practice	Theory	Practice					
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%		
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20% 20%		20%	20%	20%		
Level 3	Evaluate Create	10%	10% 10%		0% 10% 15%		15%	15%	15%	15%	15%	15%	15%
	Total	100	) %	10	100 %		) %	10	0 %	100 %			

Course Designers									
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts							
1. Mr. Silambarasan Ramadoss, Renault Nissan, silambarasan.ramadoss@rntbci.com	1. Dr. A. Siddharthan, MIT Chrompet, sidharth@mitindia.edu	1. Dr. J. Chandradass, SRMIST							
2. Mr. N. Vijayakumar, Mahindra and Mahindra, vijayakumar.n@mahindra.com	2. Dr. S. Renold Elson, VIT Vellore, renoldelsen.s@vit.ac.in	2. Mr. S. Palanisamy, SRMIST							

Cou Coe		18AUC204L	Course Name	AUTO	OMOTIVE COMPC	DNENTS AND ASSEMBL	Y DRAWING		ourse egory	,	С			C Professional Core				ore					L 0		P 4	C 2
Co	equisite ourses	18MES101L			Co-requisite Courses	Nil			C	gress ourse		Nil														
Course	e Offering	g Department	Automobi	ile Engineerir	ng	Data Book	/ Codes/Standards		Nil																	
Course	Loomin	a Dationala (Cl	D). The purpo	an of loomin	g this course is to:											Progr	am I									
		•	, , ,		•					earnir	•								•		•		40	40	44	45
	Dooo	gnize simple proj gnize the conven	ection and argui	mentation de ation of the s	velopment of surfa	ice. e parts and make use of	it in drawing the		1	2	3		2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2		onent	lional represente			e parts and make use of	a in arawing the											_								
CLR-3		e use of appropria							Ê	(%)	()				arch			abilit		<u> </u>						
CLR-4		prehend and appl							Bloor	cy (9	nt (%		hna	nent	kese	a,		staine		Worł		nce				
CLR-5 CLR-6		ze the functional nesis the Automot			parts and compone	nts			ing (I	icien	inme		iei ei	alopr	gn, F	Jsagi	an	Sus		eam	c	Fina	ning			
CLK-0	. Synu	lesis ille Automot	live components	s ironi ule giv	en part ulayiani				hink	Prof	Atta			Deve	Desi	00	Cult	ent 8		& T.e	catio	gt. &	Lear			
•		a ( )	0						evel of Thinking (Bloom).	Expected Proficiency (%)	Expected Attainment (%)		V Drohlem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	ŝ	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Leaming	-	- 2	- 3
Cours	e Learnin	ig Outcomes (Cl	_O): At the end	d of this cour	se, learners will be	adle to:			Leve	Expe	Expe			Desi	Anal	Mode	Socie	Envi	Ethics	vipu	Com	Proje	Life L	PSO - 1	PSO - 2	PSO.
		orthographic pro							1	90	85		1 N	I M	М		L	L	L	М	М	L	М	Н	М	М
				arts in conver	ntional symbols and	d representations			1	90	85		1 H		М	М	L	L	L	М	L	L	Н	Н	М	Н
		Irawing standards		nioning 8 tol	erancing in asseml	hly drawing			2	90 85	85 80		H N A N		M	M M	L	L	L	M M	M M	L	M H	M M	M M	H H
		ribe and draw the							3	85	80		/ N		H	M	L	M	L	M	M	L	M	H	L	M
					d Automotive com	ponent			3	85	80		1 N			H	L	M	L		M	L	M	H	L	Н
Duratio	on (hour)		12			12		2						1	2							12	2			
S 1-4	SLO-1	Topic 1: Orthogr Development of		n, on of solids	in technical drawin method of indicatio	ions and symbols used gs. Symbols and on on the drawing for ding and riveted joints.	Topic 5: System of F Systems (Quantitativ types of fit)	e appro	ach fo	or thre						Topic 9: Jigs types-plate, latch, channei pox, post, pot jigs, automatic drill jigs.				¥,						
	SLO-2	Drawing 1: ORT PROJECTIONS		1	Drawing 3: ASSEN	IBLY OF SLEEVE & FLANGE COUPLING	Drawing 5: ASSEMB PLATE CLUTCH	LY OF	SINGI	E		Drawing				,	PUM							RT DIA ROD		М
S 5-8	SLO-1	Topic 2: BIS Cod Engineering Dra presentation, co of dimensioning threaded parts, s common feature	wing: general pr nventional repre (7 Types) and s gears, springs a s.	rinciples of esentation sectioning,		types and the drawing – Fits types ifferent applications,	Topic 6: System of Eite Sh				e f	Topic 8: errous 8 Types- (	Non-	metal-	plastic	cs/elas	tomer	rs. li	ixture	base ng mi	& se Iling fi	t bloc	ks, Tj	nts- cla /pes c ing fix	f fixti	
	SLO-2	Drawing 2: CON REPRESENTAT AND DIMENSIC	TION OF ENGG.		Drawing 4: ASSEN BLOCK	MBLY OF PLUMMER	Drawing 6: ASSEMB INJECTOR	FUEL			Drawing DF SPA			E PAF	RT DIA	GRAI	M L		/ĬNG				ODU IG & F			
S 9-12										L	.ab: Ass	essme	ent 4				L	.ab: L	Iniver	sity E	xamii	nation	1			
Learning Resources         1. Narayana.K.L, Kanniah.P, Venkata Reddy.K, Machine Drawing, 5 th ed., New Age International, 2016           2. Gopalakrishnan.K.R, Machine Drawing, 20 th ed., Subash Publishers, 2007           3. Sidheswar N, Kannaiah.P, Sastry.V.V. S, Machine Drawing, Tata McGraw Hill, 2014										), Machi [•] N. D, N													)9			

Learning As	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weigl	ntage)			Final Examination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA – 2	2 (15%)	CLA – S	3 (15%)	CLA – 4	l (10%)#		ii (50% weigiilage)
	Leveror minking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	-	40%	-	30%	-	30%	-	30%	-	30%
Level 2	Apply Analyze	-	40%	-	40%	-	40%	-	40%	-	40%
Level 3	Evaluate Create	-	20%	-	30%	-	30%	-	30%	-	30%
	Total	100	0 %	100	) %	100 %		10	0 %	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. N. Varatharaj, Comstar Automotive Technologies Pvt, Ltd, nvaratha@comstarauto.com	1. Dr. P. Ramkumar, IIT Madras, ramkumar@iitm.ac.in	1. Dr. Rajendran R, SRMIST
2. Mr. D. Srinivasan, Ford India LTD., dsriniv9@ford.com	2. Dr. M. Murugan, VIT Vellore, hod.me@vit.ac.in	2. Mr. Jerome Stanley M, SRMIST

Course Code	18AUC203T	Course Name	APPLIED THERMAL ENGINEERING FOR AUTOMOTIVE ENGINEERS	Course Category	С	Professional Core	L 3	T 1	P 0	C 4
Pre-requisit Courses	INII		Co-requisite Courses	Cou	rses	Nil				

 Course Offering Department
 Automobile Engineering
 Data Book / Codes/Standards
 Steam Table and Mollier chart

Course Learning Rationale (CLR): The purpose of learning this course is to:		L	earnii	ng	Program Learning Outcomes (PLO)														
CLR-1: Utilize the various gas power	r cycles	1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14 15
CLR-2: Utilize knowledge in engine	testing											У							
CLR-3: Utilize various heat transfer	concepts	Ê							arch			abilit			.				
CLR-4: Enlighten the knowledge in a	air compressors and refrigeration systems	(Bloom)	y (%)	ıt (%)		dge		ent	ese			aina		Work	.	ge			
CLR-5 : Construct knowledge on air	conditioning systems	B (B	enc	nen		Knowledge	s	md	ı, Re	age	Ð	Sustainability		am V		Finance	ĝ		
CLR-6: Utilize knowledge on engine	s, heat transfer systems and air conditioning systems	kinç	Proficiency	Attainment		Knc	Analysis	Development	sign,	Usi	Culture	∞ð		Теа	ation	& F	amin		
		Thinking	μΡ			ing	Ana	& De	å	Tool Usage	& Cl	nent		al & .	licat	Mgt.	g Le		
Course Learning Outcomes (CLO):	At the end of this course, learners will be able to:	Level of	Expected	Expected		Engineering I	Problem	Design 8	Analysis,	Modern .	Society 8	Environment	Ethics	Individual	Communic	Project N	Life Long	PS0-1	PSO-2 PSO-3
CLO-1: To learn the basic assumption	ons, significance and efficiency of various air standard cycles	2	80	75		Ħ	H	M	М	L	Ĺ	M	T	M	L	L	L	H	H M
CLO-2: Acquire understanding and	numerically applying the methods to determine engine performance parameters	3	80	75		Н	Н	М	М	М	L	М	L	М	L	L	М	Н	H M
CLO-3 : Understand and apply basic	heat transfer concepts in real world applications	3	80	75		Н	Н	М	М	М	L	М	L	М	L	L	М	Н	ΗH
CLO-4: Apply the knowledge in calc	ulating the performance of air compressors and refrigerators	3	80	75		Н	Н	М	М	М	L	Н	Н	М	L	L	М	Н	ΗH
CLO-5 : Calculate performance of ai	<b>_0-5</b> : Calculate performance of air conditioning system using Psychrometric chart and applications in automotive climate control		80	75		Н	H	М	М	М	L	М	M	М	L	L	М	Н	ΗH
O-6 : Identify knowledge on engines, heat transfer systems and air conditioning systems		3	80	75		Н	Н	М	М	L	L	М	L	М	L	L	L	Н	H M

		Air Standard cycle Engine Performance Characteristics and Testing		Fundamentals of Heat Transfer Conduction	Air compressor and Refrigeration	Air Conditioning Processes and Application
Durati	on (hour)	12	12	12	12	12
S-1	SLO-1	Introduction, Air standard cycles – Different air standard cycles	Introduction to performance parameters, Brake power, Frictional power	One-dimensional Heat Conduction Plane wall	Introduction of Air Compressor and its types	Properties of atmospheric air, Psychrometric chart, dry bulb temperature and wet bulb temperature
	SLO-2	Otto cycle significance, PV and TS diagram -processes	Indicated Power, Torque, Maximum brake torque	One-dimensional Heat Conduction Plane wall	Construction and Working of Single acting and double acting air compressors	Psychrometric Processes- Sensible heating and cooling
	SLO-1	Otto Cycle- Brake thermal efficiency derivation	Fuel consumption Vs brake power, Specific fuel consumption	One-dimensional Heat Conduction Cylinder		Psychrometric Processes - Humidification, Dehumidification,
S-2	SLO-2	Compression ratio its effect on Brake thermal efficiency	Specific Energy consumption – definition, significance considering calorific values of different conventional fuels	One-dimensional Heat Conduction Cylinder	Compressor - work required –Isentropic, adiabatic and polytropic	Cooling and dehumidification Heating and Humidification
S-3	SLO-1	Otto Cycle- Mean Effective Pressure Mean Effective Pressure and work done	Volumetric efficiency, Ambient temperature, Mechanical efficiency	One-dimensional Heat Conduction Composite walls	Compressor - work required –Isentropic, adiabatic and polytropic	Bypass factor for heating and cooling coils
3-3	SLO-2	Derivation for Mean effective pressure	Thermal efficiency – definition, heat input work done -significance	One-dimensional Heat Conduction Composite walls- Numericals	Work done without clearance volume	Bypass factor for heating and cooling coils
S-4	SLO-1	Tutorial 1: Otto Cycle -Determine brake thermal efficiency, compression ratio,	Tutorial 4: Brake power, frictional power,	Tutorial 7: Plane walls, Cylinder and	Tutorial 10: Work done with and without	Tutorial 13: Psychrometric Processes
	SLO-2	mean effective pressure	Indicated Power, specific fuel consumption	composite walls numericals	clearance - Problems	
S-5	SLO-1	Diesel cycle Introduction to diesel cycle – significance	Engine specific weight, and heat balance Definition and significance	Heat transfer through extended surfaces (simple fins)	Free air delivery (FAD)	Summer Air conditioning system – construction and working
3-3	SLO-2	PV and PV and TS diagram - processes	Heat balance – computation procedure, Shankey diagram	Critical thickness of insulation- Definition and significance	Rotary air compressors, -types and working	Summer Air conditioning system – construction and working
S-6	SLO-1	Diesel Cycle- Derive Brake thermal efficiency	Measurement of friction power - Different Methods	Convection: Types, Rate equation, Heat transfer coefficient	Fundamentals of refrigeration, COP,	Winter Air conditioning system – Construction and working

		· · · · · · · · · · · · · · · · · · ·		Classes of convective flows, Introduction dimensionless groups	on to Reversed Carnot cycle – PV, TS	Air conditioning - year-round air conditioning system
0.7	SI 0-1	Diesel Cycle- Mean Effective Pressure, Mean Effective Pressure and work done	Measurement of different engine	Introduction to hydrodynamic boundary layer		Cooling load calculations
S-7	SLO-2	Derivation for Mean effective pressure	Measurement of different engine Performance Parameters	Introduction to thermal boundary	PV-TS diagram analysis and COP	Cooling load calculations
S-8	SLO-1	Tutorial 2: Diesel cycle - Determine brake thermal efficiency, compression ratio,		Tutorial 8: Simple numerical's on heat	Tutorial 11: Volumetric efficiency –	Tutorial 14: Summer Air conditioning -
	SLO-2	mean effective pressure	volumetric efficiency, mechanical efficiency	transfer coefficient and heat transfer ra	te Problems, FAD- Air compressor	Numericals
S-9		O-1 Dual cycle: Introduction to Dual cycle – Fuel consumption, Air induction significance		Heat transfer in internal and external flo Basics and examples		Application of Air conditioning systems in automobiles
3-9	SLO-2	PV and TS diagram -processes	Ambient temperature, exhaust temperature	Heat Exchangers: Types of heat Exchangers	Source of heat input, Determination of COP	Study of Automotive air conditioning systems
S-10	SI 0-1	Dual Cycle- Brake thermal efficiency derivation	Introduction to manifold pressure and in- cylinder pressure measurement	LMTD method and NTU - concept	Desirable properties of an ideal refrigerants	Automotive climate control – climate governing factors
3-10		Compression ratio, cut off ratio - its effect on Brake thermal efficiency	Case study: Engine testing facility requirements	Heat Exchangers: Effectiveness - Over Heat Transfer Coefficient	all Different Types of Refrigerants	Climatic control and its governing factors.
S-11		Dual Cycle - Mean Effective Pressure, Mean Effective Pressure and work done	Case study on Engine testing facility requirements	Fouling Factor, A real time case study o radiator	Methods to improve efficiency of vapour compression refrigeration. Eg: Avoiding two phase entry into compressor	Considerations for energy efficient heat exchange
5-11	SLO-2			A real-time case study on radiator	Methods to improve efficiency of vapour absorption refrigeration or problems to be avoided	Considerations for energy efficient heat exchange
6.40	SLO-1			Tutorial 9: Heat Exchangers: LMTD and	d Tutorial 12: Vapour compression	Tutorial 15: Summer Air conditioning -
S-12	SLO-2	thermal efficiency, compression ratio, mean effective pressure	balance	NTU- Numericals	· ·	Numericals
		1. R. Rudramoorthy, Thermal Engineer	ring, 4 th ed., Tata McGraw-Hill, 2007		5 R K Rainut Thermal Engineering 10 th ed	axmi Publications(P)I td 2015

	$1.$ K. Kuuramooruny, Thermai Engineering, $4^{\circ\circ}$ ed., Tata WcGraw-Fill, 2007	5. R. K. Rajput, Thermal Engineering, 10 th ed., Laxmi Publications(P)Ltd., 2015
	2. Michael A. Boles, Yungus A. Cengel Thermodynamics: An Engineering Approach, 2 nd ed., Tata McGraw-Hill, 2011	6. https://www.edn.com/Pdf/ViewPdf?contentItemId=4403883
s	3. Yunus A Cengel, Afshin J. Ghajar, Heat and Mass Transfer: Fundamentals and Applications, 5th ed., Tata McGraw-Hill,	7. http://www.gbv.de/dms/ilmenau/toc/54857491X.PDF
•	2015	8. https://www.airah.org.au/Content_Files/HVACRNation/2017/05-17-HVAC-001.pdf
	4. C.P. Kothandaraman, Fundamentals of Heat And Mass Transfer, 4 th ed., New Age International Publishers, 2012	

Learning As	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weigh	ntage)			Final Examination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA – 3	3 (15%)	CLA –	4 (10%)#	Final Examinatio	n (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	40 %	_	30 %	_	30 %	_	30 %	_	30%	_
Level I	Understand	40 70	_	50 70	-	50 70	-	50 70	-	5070	_
Level 2	Apply	40 %	_	40 %	_	40 %	_	40 %	_	40%	_
Leverz	Analyze	40 70	-	40 70	-	40 70	-	40 70	-	4070	_
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%	
Level 5	Create	20 /0	-	30 %	-	30 %	-	30 %	-	3076	-
	Total	10	0 %	100	) %	100	)%	10	0%	10	0 %

Learning Resources

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Gunabalan, Manager, R&D Turbo Energy, Chennai,	1. Dr. Chandramohan, NIT Warangal,	1. Mr. C. Prabhu, SRMIST
2. Mr. Shantha Kumar, Lead Engineer, Royal Enfield,	2. Dr. Ganesh, Anna University, Chennai	2. Dr. S. Thiyagarajan, SRMIST



Cou Co		18BTC101J	Course Name		E	BIOCHEMISTRY				urse egory		С				Pro	fessio	nal Co	ore				1	L T 3 0	P 2	C 4
	requisite ourses	Nil			Co-requisite Courses	Nil				Prog Cou	ressi urses		lil													
Cours	e Offering	g Department	Biotech	nology		Data	ta Book / Code:	s/Standards	N	Nil																
•																	_			•		(5				
		g Rationale (CL			ng this course is to:						arnin	•	4	0						ng Out				40 4	2 4	4 45
CLR-1 CLR-2		ret the various as			cules the enzymes involved	1				1	2	3	1	2	3	4	5	6	7	8	9 .	10	11	12 1	3 1	4 15
CLR-3	: Comp	rehend principles	behind estimati	on and analys	is of biomolecules in	the body fluids				Ê	()	(9				arch			ability		_					
CLR-4 CLR-5		ate the role of bio is the metabolic d		, in the second s	processes and the re	ole of biochemistryi	vin making them e	economical		Blool	6) (o	ent (9	ledge		ment	Rese	Ð		stain		Wor		ance	_		
CLR-5					e an understanding d	on biomolecules				king (	oficier	ainme	Know	lysis	velop	sign, l	Usag	lture	& Su		eam	ы	& Fin	Learning		
										Thin	d Pro	d Att	ering I	ı Ana	& Dev	s, Des	Tool	& Cu	ment		a	nicati	Mgt. 8	g Lee		
Cours	e Learnin	g Outcomes (C	LO): At the e	nd of this cou	rse, learners will be	e able to:				evel of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Jesign & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & leam Work	Communication	Project Mgt. & Finance	Life Long		OS
CLO-1	: Discus	ss in details the s	tructures and re	actions of bion	nolecules (proteins, li	pids, nucleic acids,	, and carbohydra	tes)		1	80	ш 70	L	-	-	₹ H	≥ H	ഗ -	<u>ш</u>			U H				
CLO-2					n metabolic pathway						80	70	-	L	-	Н	Н	-	-			Н		H I		
CLO-3 CLO-4					vays - the energy-yie olated but tightly inte						80 80	70 70	-	H	-	H H	H H	-	-			H H		H I H I	1     1	
CLO-5					eases and disorders	gratea, mar op com		ia noj janoaono		2	80	70	-	Ĥ	-	H	Н	-	-	-	Ч	Н	-	ΗI	1 F	H H
CLO-6	: Explai	in the importance	of laboratory sa	fety and stand	ard operating proced	lures of lab equipme	nent			1	80	70	-	Н	-	Н	Η	-	-	- H H - H H H H					H H	
Durati	on (hour)		15			15		1	5						15								15			
S-1	SLO-1	History of Bioch	hemistry, Chem	ical bonds	Introduction to me	tabolism	Introdu	iction to amino	acid me	etaboli	sm		troductio						h	Aetabo numan			ships	amon	the i	major
3-1	SLO-2	pH and Buffers			Carbohydrate met	abolism	Transa	mination					ormones om adipo			leas	e of fa	tty Ac	^{ids} li	ntrodu	ction ·	-Bioe	energe	ətics		
S-2	SLO-1	Introduction and carbohydrates	d classification	of	Glycolysis - Introdu	uction	Deami	nation				Fa	atty acid	oxidati	ion - In	trodı	iction		ŀ	ligh er	ergy	сотр	ound	s		
5-2	SLO-2	Monosaccharai	ides – structure	and function	Role of enzymes i	n glycolysis	Metabo	olism of ammor	nia			O	xidation						A	ATP sy	nthes	is				
S-3	SLO-1	Disaccharides–	- structure and	function	Pyruvate metaboli	sm	Urea c	ycle				Er	nergetics	of fatt	ty acid	oxida	ation		E	Electro	n tran	sport	chair	ı (ETC	)	
3-3	SLO-2	Polysaccharide	es – structure ar	nd function	Regulation of glyce	olysis	Importa	ance of urea cy	vcle			Ke	etone bo	dies					E	Biologia	al ox	idatio	n			
S 4-5	SLO-1 SLO-2	Lab 1 - Introduc instruments and			Lab 4 - Qualitative Disaccharides in fo			- Estimate bloo and diabetes r				^e La	ab 10: Re	epeat/F	Revisio	n of	experi	iments		.ab 13 Lowry'			tive ar	nalysis	of pro	oteins
S-6	SLO-1	Introduction and acids	d classification	of amino	Citric acid cycle - I	Introduction	Biosyn	thesis of amind	o acids			Ke	etogenes	sis						Electro						
3-0	SLO-2	Introduction and	d classification	of proteins	Regulation of Citri	of Citric acid cycle Tyrosine synthesis Biosynthesis of fatty acids						Dvervie ETC	w of	pathv	vay in	the m	itocho	ndrial								
S-7	SLO-1	Primary Structu	ire of proteins		Gluconeogenesis	ogenesis and energetics Phenylalanine synthesis				Re	egulation	of fatt	ty acid	synti	hesis			/arious ETC	com	plexe	s in th	he mito	chon	drial		
3-1	SLO-2	Secondary, Ter structure of pro		ernary	Cori and Glucose-	alanine cycle	le Tryptophan synthesis Eicosanoids and				ls and	choles	sterol	biosy	nthes	is C	Chemic	smot	ic the	eory						
S-8	SLO-1	Functions and L applications of p	0	I	Glycogen metabol	ism	Molecules derived from amino acids Lipoproteins C				Dxidati	/e Ph	osph	orylat	ion											
3-0	SLO-2	Pielogical important partidos Hormonos regulato muselo uso of					ransmitters				Di	sorders	of Lipic	d meta	bolis	т		li	nhibito	rs of	oxida	tive p	hosph	orylati	on	

9-10 SLO-2 SLO-2 S-11		Various bioproducts produced from	salivary amylase on starch	Layer Chromatography	cholesterol
	1 Enzyme kinetics	Various bioproducts produced from			01010310101
0-11	· _···· <b>,</b> ································	carbohydrate metabolism	Biosynthesis of lignin, tannin, and auxin	Biosynthesis of Pyrimidines	Glycerol phosphate Shuttle
SLO-2	2 Industrial application of enzymes	Disorders of carbohydrate metabolism	Regulation of amino acid synthesis	Biosynthesis of Purine	Malate aspartate Shuttle
SLO-	1 Introduction to Nucleic acids – DNA and RNA	Diabetes Mellitus – Types and diagnosis	Disorders of tyrosine metabolism	Degradation of purine and pyrimidines nucleotides	Photosynthesis
SLO-2	2 Classification of lipids	Biochemical aspects of Diabetes mellitus	Disorders of phenyl alanine metabolism	Disorders of purine metabolism	Light and dark reactions
SLO-7	1 Classification of fatty acids	Oral medications of Diabetes mellitus	Disorders of heme metabolism	Disorders of pyrimidine metabolism	Carbon Dioxide Fixation: Calvin-Benson Cycle
3-13 SLO-2	2 Cholesterol and cell membranes		Medically important peptides and amino acid derivatives	Deoxyribonucleotide Biosynthesis	Regulation of Carbon Dioxide Fixation
S SLO-		Lab 6 - Qualitative analysis of lipids	Lab 9 - Estimation of enzyme kinetic	Lab 12 - Enzymatic hydrolysis of glycogen	Lab 15 - Quantitative analysis of urea in
14-15 SLO-2	2 Monosaccharide in food samples	(triglycerides, cholesterol, phospholipids)	parameters	by $\alpha$ and $\beta$ amylase	serum

 U. Satyanarayana, U. Chakrapani, Biochemistry, 4th ed., Elsevier India, 2013
 David L. Nelson, Michael M. Cox, Lehninger Principles of Biochemistry, 7th ed., W.H. Freemen & Co., 2017 Learning Resources

 Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto, Lubert Stryer, Biochemistry, 8thed., 2015
 Donald Voet, Judith G. Voet, Charlotte W. Pratt, Fundamentals of Biochemistry: Life at the Molecular Level", 5th ed., John Wiley & Sons Inc., 2016

Learning Asse	essment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examinatio	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#		n (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Lever	Understand	2070	2070	1370	1370	1370	1370	1370	1370	1370	1370
Level 2	Apply	20%	20%	20% 20%		20% 20%		20%	20%	20%	20%
Leverz	Analyze	2070	20%	2070	2076	2076	2076	2076	2070	2076	2070
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
Level 5	Create	1070			1370	1370	1370	1370	1370	1370	1370
	Total	100	0 %	10	0 %	10	0 %	10	0 %	100 %	

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1 Dr. P. Bala Kumaran, Proklean Technologies (P) Limited, Chennai, genbalu86@gmail.com	1.Prof. K Subramaniam, IITM, Chennai, subbu@iitm.ac.in	1. Dr. S. ThyagaRajan, SRMIST
2. Dr. Karthik Periyasamy, Aurobindo Pharma Limited, Hyderabad karthikmpk@gmail.com	2.Prof. R. B. Narayanan, SVCE, Chennai, rbn@svce.ac.in	2. Dr. V. Vinoth Kumar SRMIST

Cou Coe		18BTC102J Course Name		C	ELL BIOLOGY			ourse egory	,	С				Prof	essior	al Co	re					L 3			C 4
Co	equisite urses e Offering	Nil g Department Biotec	hnology	Co-requisite Courses	Nil Data Boo	k / Codes/Standards			gressi ourse		Nil														
Course	e Learnin	g Rationale (CLR): The pu	rpose of learnir	ng this course is to:				Le	earnir	ng				ļ	Progra	ım Le	arnin	g Ou	tcom	es (P	PLO)				
		the basic concepts and under			ion			1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		ze the different strategies of c ate the concepts of structural a			otes									ç			liity								
		te a platform to study the mole						loom	y (%)	nt (%)	dge		ent	esear			ainat		Vork		ge				
CLR-5		e the applications of various re						ng (B	cienc	nmer	alwor	sis.	lopm	gn, R	sage	e	Sust		am V	_	Finar	ning			
CLR-6	: Analy	ze the concept of cell signalin	ig and their role	in diseases				⁻ hinki	Profi	Attai	ing K	Analy	Deve	Desi		Cult	ent &		l& T€	icatio	gt. &	Lear			
Course	e Learnin	g Outcomes (CLO): At the	end of this cou	rse, learners will be	able to:			_evel of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	ndividual & Team Work	Communication	Project Mgt. & Finance	Life Long Leaming	PSO-1	PSO-2	PSO-3
		iss on the basic concepts of c						2	80	70	М	М	-	Н	-	-	-	H	-	-	-	-	Н	Н	Н
		on designing and conducting e gnize the basis of cell structur						2	85 75	75 80	M	M	H H	H H	- H	-			H H	-	-	-	H H		H H
CLO-4	: Desc	ribe the steps involved in cell-	cell signaling in	mammalian cell sys	stems			2	85 85	80 80	M	M	Н	Н	Н	Н	Н		H	-	-	-	H	Н	Н
CLO-5					of diagnostic and therapeutic applications of cells						М	М	Н	Н	Н	М		<u>H H H</u> H H H				-	Н		Η
CLO-6	: Desig	in the experiments using routil	ne and speciali	zed cells to study ce	d cells to study cell proliferation, mitosis spread and karyc					75					H							Η	Η		
Duratio	on (hour)	15			15	1	5				15						15								
S-1	SLO-1	Introduction to cell biology		Cell structure and fu	unction: Nucleus	Cytoskeleton				F	Principles of cell signaling					С	Cancer								
_	SLO-2	Origin and history of life		Internal organization	n of Nucleus	Types and function				٨	Models of cell signaling				In	Introduction to cancer									
S-2	SLO-1	Evolution of cell		Endoplasmic reticul	lum	Microfilaments				h	Intracellular signal transduction				Stages of cancer										
0-2	SLO-2	Evolution of metabolism		Protein folding and	processing in ER	Intermediate filaments	S			F	Pathways	in sign	al tran	sduct	ion		Tj	ypes	of car	ncer					
S-3	SLO-1	Origin of prokaryotes		Lipid synthesis in S	ER	Microtubules				F	unction c	f cell s	urface	rece	otors		D	evelo	pmer	t of c	ance	r			
5-3	SLO-2	Endosymbiosis		Export of proteins a	and lipids from ER	Re-organization of mi mitosis			Ū	(	GPCR pat	hway					H	allma	rks of	cand	cer				
S 4-5	SLO-1 SLO-2	Lab 1: Cell Morphology: Micr observation of eukaryotic cel		Lab 4: Cell Organel cells	lles: Nuclear staining of	Lab 7: Cell Proliferation	on: Mi	totic in	dex	L	.ab 10: Re	epeat/l	Revisio	on of e	experii	nents		ab 13. 6 myc			rentia	ition: I	L6 my	oblasi	's to
• •	SLO-1	Origin of eukaryotes		Golgi apparatus		Transport of molecule	es in ce	ell		C	AMP pati	iway					0	ncoge	enes	and t	umor	supp	resso	r gene	s
S-6	SLO-2	Differences between Prokary Eukaryotes		Protein sorting from	n Golgi	Passive diffusion				F	Receptor i	yrosin	e kinas	se pat	hway		Ta	argete	əd drı	ig the	ərapy				
S-7	SLO-1	Development of multicellular Yeast, Amoeba & Volvox	organisms:	Lysosomes		Active diffusion				٨	/APK pat	hway					E	pithel	ial ce	ll can	cer				
3-1	SLO-2	Plant cells & Animal cells		Phagocytosis and a	autophagy	lon channels				(	Cell division			0	ral ca	ncer									
S-8	SLO-1	Cells as experimental models	S	Endocytosis			Cell cycle Lung cancer		er																
3-0	SLO-2	Tools of cell biology Metabolism				Phagocytosis			Mitosis and stages Breast cancer																

SRM Institute of Science & Technology – Academic Curricula (2018 Regulations) - Control copy  $135\,$ 

S 9-10		Lab 2: Cell development: Embryogenesis in fruit fly and Zebrafish	Lab 5: Osmosis: Stomatal opening and closing	Lab 8: Karyotyping: G banding	Lab 11: Cell division: Mitotic cell division in onion root tip	Lab 14: Heterochromatin: Polytene chromosomes
0.44	SLO-1	Molecular composition of cell	Mitochondria- structure and function	Cell-cell interactions	Meiosis	Classification of breast cancer
S-11	SLO-2	Biosynthesis of cellular constituents	Genetic system of mitochondria	Cell junctions	Programmed cell death:Necrosis and apoptosis	Treatment of breast cancer
S-12	SLO-1	Enzymes as biocatalysts	Chemiosmotic coupling	Adhesion junctions	Intrinsic and extrinsic pathway	Neurodegenerative diseases
5-12	SLO-2	Central role of Enzymes	Chloroplasts	Tight junctions	Cell differentiation	Dementia
S-13	SLO-1	Cell membrane	Photosynthesis	Gap Junctions	Stem cells adult and embryonic	Alzheimer's disease
3-13	SLO-2	Glycocalyx	Peroxisomes	Plasmodesmata	Therapeutic applications of stem cells	Diagnosis and treatment
S 14-15		Lab 3: Chromosome preparation: Metaphase spread preparation	Lab 6: Cellular fractionation: chloroplast	Lab 9: Cell viability: Determination of cell viability using typhan blue dye exclusion	Lab 12: Cell division: Meiosis in grass hopper	Lab 15: Histology: Sectioning of tissues using microtome and staining
Learni Resou	•	<ol> <li>Channarayappa, Cell biology, Universiti</li> <li>Rastogi, S.C, Cell Biology, New Age Inter</li> </ol>			rs, Tata McGraw Hill Education Pvt. Ltd., Nev Iar biology, 2 nd ed., Books & Allied (P) Ltd., 20	

	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examination	(50% weightage)
		CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	l (10%)#		i (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
201011	Understand	2070	2070	1070	10/0	10/0	10/0	1070	10/0	1070	10/0
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
-	Total	10	0 %	10	0 %	10	0 %	10	0 %	10	) %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. C. N. Ramchand, Saksin Life sciences Pvt Ltd, Chennai, ramchand@saksinlife.com	1. Prof. K Subramaniam, IITM, Chennai, subbu@iitm.ac.in	1. Dr. S. ThyagaRajan, SRMIST
2. Dr. Karthik Periyasamy, Aurobindo Pharma Limited, Hyderabad, karthikmpk@gmail.com	2. Prof. R. B. Narayanan, SVCE, Chennai, rbn@svce.ac.in	2. Dr. S. Sujatha, SRMIST

Course	18BTC103J	Course	MICROBIOLOGY	Course	6	Brafassianal Cara	L	Т	Ρ	С
Code	100101033	Name	MICROBIOLOGT	Category	C	Professional Core	3	0	2	4

Pre-requisite Courses			Co-requisite Courses	Nil		Progressive Courses	Nil
Course Offering Depa	partment	Biotechnology			Data Book / Codes/Standards	Nil	

Course Learning Rationale (CLR): The purpose of learning this course is to:	L	earni	ng				Prog	yram l	earn	ing O	utcor	nes (F	PLO)			
CLR-1 : Illustrate the fundamentals of Microbiology and different types of microorganisms and their characteristics	1	2	3	1	2	3 4	5	6	7	8	9	10	11	12	13	14 15
CLR-2: Demonstrate the fine structure of bacteria, their functions, growth and cultivation of microorganisms									y							
CLR-3: Illustrate various infectious diseases and their mode of actions	Ê		-			uch l			abilit							
CLR-4: Demonstrate the host-microbe interactions		y (%)	t (%)	gg		ent			aine		Work		ge			
CLR-5: Illustrate the various applications of microorganisms in various fields	(Bloc	Proficiency	Attainment	Me	s	Development Desian. Rese	age	Ð	Sustainability				Finance	ning		
CLR-6: Analyze the importance of Microbiology in various field applications	Thinking	ofici	taint	2 X	Analysis	Desian.	Us:	Culture	∞ŏ		Team	ion	δ. F	arni		
	Ē	L P		bu.				& CL	nent		∞ð	licat	Mgt.	<u> </u>		
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering Knowledge	Problem	Design & Analvsis.	Modern	Society 8	Environment	Ethics	Individual	Communication	Project N	Life Long	PSO - 1	PSO - 2 PSO - 3
CLO-1: Illustrate the roles and characteristics of microorganisms	2	80	70	-	Н		-	-		-	Н	-	-	-	Н	H H
CLO-2: Identify growth of microorganisms, its impact in environment, applications of advanced microscopical techniques	2	85	75	-	ΗI	4 -	-	-	Н	-		-	-	-	Н	H H
CLO-3: Explain the role of microbes in public health and antimicrobial agents	2	75	80	Н	- 1	Н М	Н	-	Н	-	Н	-	Н	-	Н	H H
CLO-4: Discuss various interactions of microbes with various microbes, animals and plants	2	85	80	Н	- 1	Н	Н	-	М	-	Н	-	Н	-	Н	H H
CLO-5 : Explain the applications of microbes and their products in various field	3	85	80	Н	ΗI	Н Н	Н	-	М	-	Н	-	Н	-	Н	H H
CLO-6 : Illustrate the fundamental and applied Microbiology	2	80	75	Н	ΗI	Н Н	Н	-	М	-	Н	-	Н	-	Н	H H

Durati	on (hour)	15	15	15	15	15
S-1	SLO-1	Introduction to Microbiology	Nutritional requirements of bacteria	0,0	Microbial infections, transmission, and their mode of action	Introduction to Applied Microbiology
3-1	SLO-2	Prokaryotes and Eukaryotes	Nutritional types of bacterium	Morphology of fungi	Sources of infection	Beneficial microbes and Microbial metabolites-overview
S-2			Physical nutrients requirement of the bacteria	Structural characteristics and ecological association of fungi		Microbial applications in Biotechnological field
3-2	SLO-2	L naracterization of microordanisms	ion and nomenclature of Types of culture media; Factors influencing Sexual and Asexual Reproduction of fundi Vibrio cholera-Mode of action		Epidemiological terminologies-Infectious diseases caused by Vibrio cholerae	Microbial enzymes in various biotechnological applications
S-3	SLO-1		rganisms bacterial growth Sexual and Asexual		Vibrio cholera-Mode of action	Microbial secondary metabolites-antibiotics
3-3	SLO-2	Light Microscopy-Bright held, Dark held	Microbial growin phases	Cultivation of fungi	Vibrio cholera-Treatment	Microbial applications in agricultural field
S 4-5		Lab 1: Aseptic techniques and Media preparation (Both liquid and solid)	Lab 4: Staining Techniques (Simple staining, Gram staining, spore staining)	Lab 7: Enzyme based biochemical characterizations-Catalase test	Lab 10: Repeat/Revision of experiments	Lab 13: Antibiotic sensitivity test-Kirby- Bauer assay
S-6	SLO-1	Phase contrast; Fluorescent Microscopy	Types of bacterial culturing/fermentations with respect to growth phases	Preservation techniques of fungi	Sexually Transmitted diseases	Microbial applications in agricultural field
5-0	SLO-2	Differential and specific staining methods	Microbial growth curve and kinetics	Fungal toxins	Acquired Immuno Deficiency syndrome (AIDS)	Advancements in agricultural field
S-7	SLO-1	Electron Microscopy techniques: Scanning Different methods of quantitative bacterial Bacterial viruses-Bacterionhages HIV-Replication; Opportunistic In		HIV-Replication; Opportunistic Infections associated with AIDS; Treatment	Biocontrol agents-Biofertilizer	
3-1	SLO-2	Sample preparation techniques for SEM and TEM	Different methods of quantitative bacterial growth-Indirect method	Types of bacteriophages and their General characteristics		Microbial applications in Pharmaceutical field
S-8		Advanced Microscopic techniques- Confocal Microscopy	Utilization of energy in non-biosynthetic processes- Energy utilization-Bacterial	Morphology and structure of bacteriophages	Antinactorial adonts_classification	Microbial applications in Environmental field

			motility			
	SLO-2	Scanning Probe Microscopy-Scanning Tunneling	Bacterial nutrient uptake mechanisms- Simple Diffusion, Active Transport, Group Translocation	Replication-Viruses of bacteria	Mode of actions of antibiotics	Microbes in the pollution removal and bioplastic syntheis
S 9-10	SLO-1 SLO-2	Lab 2: Isolation and enumeration of microorganisms from given sample	Lab 5: Motility test by Hanging drop method	Lab 8: Enzyme based biochemical characterizations-oxidase test	Lab 11: Triple sugar Iron agar test-H2S production	Lab 14: Identification of bacteria using 16s- rRNA sequencing
S-11	SLO-1	Scanning Probe Microscopy - Atomic Force Microscopy	Bioenergetics- utilization of energy in biosynthetic processes	Animal viruses-Classification	Multidrug resistance in bacterial pathogens-MDROs, MRSA, VRE	Control of Microorganisms-Physical, chemical and biological methods
3-11	SLO-2	Morphology and fine structure of Bacteria	Biosynthesis of small molecules-synthesis of amino acids	Animal virus- Replication	Mechanisms of antibiotic resistance	Host-microbe interactions: Microbe- Microbe interaction
S-12	SLO-1	Size, Shape, And Arrangement of Bacterial Cells	Biosynthesis of macromolecules-synthesis of peptidoglycan	Viruses of cancer	Antifungal agents	Host-microbe interactions: Plant-microbe interaction
3-12	SLO-2	External structure of bacteria	Synthesis of organic cell material in chemoautotrophic bacteria	Viroids and Prions	Mode of action of antiviral agents	Host-microbe interactions: Animal-microbe interaction
S-13	SLO-1	Cell organization	Bioenergetics of microbial metabolism	Plant viruses-Classification	Antiviral agents	Normal/indigenous flora and opportunistic flora of human body
3-13	SLO-2	Internal structures of bacteria	Aerobic respiration and Anaerobic bioenergetics	Replication of plant viruses	Mode of action of antiviral agents	Probiotics and Prebiotics
S 14-15		Lab 3: Purification and preservation techniques of bacterial cultures	Lab 6: Biochemical Characterization of Bacteria–IMViC test	Lab 9: Enzyme based biochemical characterizations-Urease test	Lab 12: Casein and Starch Hydrolysis	Lab 15: Differentiation of live and dead cells using fluorescence Microscopy

 
 Learning Resources
 1. Pelczar et al., Microbiology, 7th ed., Mc Graw Hill, 2011

 2. Madigan et al., Brock Biology of microorganisms, 12th ed., Prentice Hall,2008

 3. Davis et al., Microbiology, 6th ed., Lippincott Williams and Wilkins, 2010

Prescott et al., Microbiology, 11th ed., Mc Graw Hill, 2011
 Brooks et al., Medical Microbiology, 26th ed., Lange Med. 2012

	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examination	(EO9/ woightage)
	Level of Thinking	CLA – 1	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#		n (50% weightage)
	Lever or Triinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Total	100	0 %	100	0%	10	0 %	10	0%	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. S. Sam Gunasekar, Orchid Chemicals and Pharmaceuticals Ltd., sam@orchidpharma.com	1. Dr. A. Gnanamani, CSIR-Central Leather Research Institute, agmani_2000@yahoomail.com	1. Dr. K. Ramani, SRMIST
2.Dr. D. Gunaseelan, BIOCON Ltd., guna.sachin@gmail.com	2. Dr. Anbumani Sadasivam, CSIR-Indian Institute of Toxicology Research, anbumani@iitr.res.in	2. Dr. R. Muthukumar, SRMIST

Course Code	18BTC104T	Course Name	GENETIC	S AND CYTOGENETICS	-	ourse tegory		С				Pro	fessio	nal Co	ore					L 3	T 0	P (	C 3
Pre-requ Course	es ^{IVIII}		Co-requisite Courses	Nil			ress urse		8BTC1	5J													
Course Of	ering Department	Bioteci	hnology	Data Book / Codes/Star	ndards	Nil																	
Course Lea	arning Rationale (CL	.R): The pu	rpose of learning this course is to:			Le	arnir	ng					Progr	ram L	earni	ing Ou	utcom	nes (F	PLO)				
CLR-1: /	Analyze the pattern of	f inheritance o	f genes in eukaryotes			1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14 1	15
	Jse two and three fac											_			₽								_
	Jse Karyotype in dete					Ê	(%	(9)				Research			Sustainability		~						
			g of genes in bacteria.			Thinking (Bloom)	5) )	Attainment (%)		<b>)</b>	& Development	lese			tain		Team Work		Finance				
	Analyze genetic variat					g (E	ienc	mei	1	<u>.</u>	do	n, R	age	Ð	Sus		m		ina	ing			
CLR-6: /	Analyze genetic variai	tion and inher	itance in living organisms.			nkir	rofic	ttair	, K	alys	evel	Design, I	Tool Usage	& Culture	it &		Це	ation	8. 1	eaming			
	•		end of this course, learners will be	able to:		Level of Thi	Expected Proficiency (%)	Expected	Engineering Knowledge		Design	Analysis,	Modern Too	Society	Environment	Ethics	Individual &	Communication	Project Mgt. &	Life Long L	PS0 - 1	PSO-	PSO-3
			Genetics and interaction of genes			1	80	80	H		Н	Н	-	М	L	Н	Н	Н	Н	Н	Н		Н
			nts in the preparation of linkage m	ар		2	85	75	H		Н	Н	-	-	М	Н	Н	Н	Н	Н	Н	ΗI	1
	Recognize the pattern					2	75	80	Μ		М	Н	М	М	-	М	Н	Н	Н	Н	Н	ΗI	1
			e construction of linkage map in ba	cteria		2	85	80	Н	_	Н	Н	-	-	Н	L	Н	Н	Н	Н	Н		Н
	Analyze genes in the					3	85	75	Н	_	Н	Н	-	М	Н	Н	Н	L	Н	Н	Н		Н
CLO-6 :	Explain the basic con	cepts and prin	ciples of nucleic acids in prokaryo	tic and eukaryotic organisms		2	80	80	H	Н	Н	Н	L	М	М	М	Н	Н	Н	Н	Н	ΗI	Н

Durati	ion (hour)	9	9	9	9	9
S-1	SLO-1	Mendel's Experiments	Chromosome structure	Mutation	Bacterial genetics	Population genetics
3-1	SLO-2	Law of segregation	Chromosome organization	Classification of mutation	Mechanisms of recombination	Allele frequency
S-2	SLO-1	Law of independent assortment	Giant chromosomes- polytene chromosome	Structural chromosomal aberration	Transformation in bacteria	Calculation of allele frequency in a population
0-2	SLO-2	Problems in Mendelein inheritance	Lampbrush chromosome	Types of structural aberration	Mapping by transformation	Solving Problems
S-3	SLO-1	Allelic interaction	Linkage	Numerical chromosomal aberration - Aneuploidy	Recombination by generalized transduction	Calculation of genotype frequency in a population
0-0	SLO-2	Lethal genes	Arrangement and types of linkage	Euploidy	Mapping by generalized transduction	Hardy-Weinberg equilibrium
S-4	SLO-1	Non-allelic interaction	Crossing over	Non-disjunction	Specialized transduction by lambda phage	Applications of Hardy Weinberg equilibrium
3-4	SLO-2	Epistatis	Frequency of recombination	Aneuploids in humans	Mapping by specialized transduction	Solving Problems
с. ғ.	SLO-1	Duplicate genes	Cytological basis of crossing over	Mosaics	Conjugation	Changes in allele frequency
S-5	SLO-2	Complementary and inhibitory genes	Stern's experiment	Position effect	Recombination by conjugation	Changes in allele frequency by mutation
S-6	SLO-1	Multiple allelism -ABO	Mapping by two factor cross	Chromosome preparation from leukocyte culture	Interrupted mating analysis	Changes in allele frequency by migration
3-0	SLO-2	Rh factor in Humans	Solving Problems	Chromosome preparation from bone marrow	Mapping by conjugation	Migration dynamics

S-7	SLO-1	Cytoplasmic inheritance	Mapping by three factor cross	Chromosome preparation fro fluid and chorionic villi	om amniotic	Preparation of linkage maps in bacteria	Changes in allele frequency by selection
5-7	SLO-2	Pedigree analysis - Solving Problems	Solving Problems	Banding technique		Solving Problems	Selection dynamics
S-8	SLO-1	Mechanisms of sex determination	Combining of map segments	Karyotype preparation and a	nalysis	Merozygote analysis	Random genetic drift
3-8	SLO-2	Sex linked inheritance	Preparation of linkage map	Prenatal diagnosis		Fine structure mapping	Dynamics of random genetic drift
S-9	SLO-1	Epigenetics - reprogramming	Somatic cell hybridization	Fluorescent in situ hybridizat	tion	Solving Problems	Genetic equilibrium
3-9	SLO-2	X-inactivation	HAT selection procedure	Comparative Genomic hybrid	dization	Solving Problems	Solving Problems
Learn Resou	•	1. Gardner, Simmons, Sunstad, Princip	les of Genetics, 8 th ed., John Wiley and Sons	, Inc., 2006 2	. Monroe W.	Strickberger, Genetics, 3 rd ed., PHI Learnir	ng, 2008

Learning Asse	essment											
	Bloom's			Conti	nuous Learning Ass	essment (50% weigl	htage)			Final Examination	(EOV) weightage)	
	Level of Thinking	CLA – 1	1 (10%)	CLA – 2	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#		n (50% weightage)	
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	40 %	_	30 %	_	30 %	_	30 %	_	30%	_	
Level I	Understand	40 /0	-	50 70	-	50 78	-	50 78	-	5078	-	
Level 2	Apply	40 %		40 %		40 %		40 %	-	40%		
Leverz	Analyze	40 /0	-	40 70	-	40 70	-	40 70	-	4070	-	
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%		
Level 5	Create	20 %	-	30 /0	-	30 //	-	30 %	-	3070	-	
	Total	100	)%	100	) %	100	0 %	100	)%	100 %		

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. C. N. Ramchand, Saksin Life sciences Pvt Ltd, Chennai, ramchand@saksinlife.com	1. Prof. K Subramaniam, IITM, Chennai, subbu@iitm.ac.in	1. Dr. S. Barathi, SRMIST
2. Dr. Karthik Periyasamy, Aurobindo Pharma Limited, Hyderabad, karthikmpk@gmail.com	2. Prof. R. B. Narayanan, SVCE, Chennai, rbn@svce.ac.in	2. Dr. K. T. Ramyadevi, SRMIST

Cou Co		18BTC105J	Course Name		Ν	IOLECULAR BIOLOG	Y		-	ourse tegor		С				Proi	fessioi	nal Co	ore				L 3	T 0	P 2	C 4
Co	equisite urses Offering	18BTC104T g Department	Bioteo	chnology	Co-requisi Courses	INII	a Book	/ Codes/Standards			gress ourse		Vil													
Cours CLR-1 CLR-2 CLR-3 CLR-4 CLR-5 CLR-6 Cours CLO-1	e Learnin : Illustri : Demo : Demo : Demo : Illustri : Analy e Learnin : Discu	g Rationale (CLI ate the chemistry onstrate the mode onstrate transcrip onstrate protein s ate the various re rze the chemical a g Outcomes (CL	R): The provident of polynucle of polynucle of DNA repertion and the segulatory ele and molecule CO): At the concepts and	urpose of learn eotides olication processing of a modification ments that co ar processes t e end of this cc d principles of	in regulation of ce ntrol gene expres hat occur in the c urse, learners wi nucleic acids fron	s to: ellular activities sion at the transcriptio rells Il be able to: n the perspective of en	onal lev	el			58 08 Expected Proficiency (%) 7	52 02 Expected Attainment (%) 05	- Endineering Knowledge	H Problem Analysis	H - Design & Development	- Analysis, Design, Research	Progr - Wodern Tool Usage	Society & Culture 9	H - Environment & Sustainability 2	Ethics		inance	12	13 H H20-1	14 BSO - 2	15 8 - OSd H H
CLO-3 CLO-4 CLO-5	: Illustri : Discu : Expla	ate the mechanis	and role of and machine of gene exp	of the nucleic a ery of nucleic a ression under	acids in gene exp cids responsible anabolic and cata	ression. for cell functioning. abolic conditions.				2 2 3 2	75 85 85	80 80 80 75	H H H	- - H	Н Н Н Н	M H H	H H H	- - -	H M M M	- H	1 - 1 - 1 - 1 -	Н Н Н	- - -	H H H	H H H	H H H H
Durati	on (hour)		15			15			15						15								15			
S-1	SLO-1	Scope and histo	ry		Basic rules for	replication		RNA polymerases in eukaryotic cells	prokar	yotic a	and	G	enetic co	ode						Gene re	gulatio	n				
3-1	SLO-2	Proof for DNA as	s the geneti	c material	Chemistry of D	NA synthesis		Types and function o	of RNA	polym	erases	s w	obble hy	pothes	sis				I	Principle	es of ge	ene re	gulatio	n		
S-2	SLO-1	Proof for semi co	onservative	replication	Semi discontin	uous replication		Structure and functio					ranslatio	n in pr	okaryo	tic ce	lls			Transcri	ptiona	gene	regula	ation		
3-2	SLO-2	DNA constituent	ts		Pulse chase ar	nd pulse labeling exper	riment	Fine structure of prok genes	karyotic	and e	eukary	otic In	itiation o	f trans	lation					Post tra	nscript	ional g	iene re	egulati	on	
	SLO-1	Nucleoside and	Nucleotide		Enzymes invol	ved in replication		Transcription of RNA	in prol	karyot	es -	El	longatior	of tra	nslatio	n			,	Activato	rs					
S-3	SLO-2	Structure of DNA	4			ctions of DNA polymera and eukaryotic replicati		Elongation and termi	ination			Tı	ransloca	tion						Co-activ	ators					
S 4-5	SLO-1 SLO-2	Lab 1: Isolation of bacteria	of genomic l	DNA from	, ,	I DNA isolation	1011	Lab 7: Polyacrylamid of DNA	le gel e	lectro	ohores	sis Lá	ab 10: R	epeat/l	Revisio	on of e	experi	ments	s 1	Lab 13:	Ligatio	n of d	igeste	d DNA		_
		Base pairing and	d base stack	king	Proof reading a	activity		Transcription in euka	aryotes			Te	erminatio	on of tr	anslati	ion				Suppres	sors –	Co-si	ippres	sors		
S-6	SLO-2	Models of DNA			5'-3' exonuclea Topoisomerase	ase activity and e activity		Structure of promoter and tRNA genes	rs in m	RNA,	rRNA,	Ri	ibosome	recyc	ling					Modera	ors, Si	lencei	's and	Enhai	ncers	
	SLO-1	Double helix			Events in the n	eplication fork		Transcription of mRN	VA			Tı	ranslatio	n in eu	ıkaryot	ic cel	ls		(	Operon	6					
S-7	SLO-2	Features of Wat	son and cric	k model	Telomeric DNA	•		Steps in transcription polymerase II	,			Po	olyribosc	me						Positive	and n	egativ	e regu	lation		
	SLO-1	Major and minor	r groove		Models of DNA replication	A replication – Bidirectio	onal	Transcription of tRN. polymerase III	A by R	NA		Po	ost trans	lationa	al modi	ficatio	ons		I	Lac Ope	ron					
S-8	SLO-2	Forms of DNA -	A, B, Z		- T	ation-theta model		Transcription of rRN polymerase I	IA by R	NA		Pi	RNA by RNA Protein folding Regulation					Regulation of Lac operon by glucose								

SRM Institute of Science & Technology – Academic Curricula (2018 Regulations) - Control copy  $141\,$ 

S 9-10		Lab 2: Qualitative analyses of genomic DNA	Lab 5: Qualitative analyses of plasmid DNA	Lab 8: Isolation of RNA	Lab 11: Restriction digestion of Plasmid DNA	Lab 14: Effect of UV rays in the bacterial cell growth
S-11		Structure and function of RNAs– mRNA, rRNA and tRNA	Strand displacement model	Processing of tRNA	Protein sorting and targeting	Trp Operon
5-11	SLO-2	Secondary structures in RNA	Rolling circle model	Processing of rRNA	Types of Protein targeting	Control of Trp operon by Attenuator
S-12		DNA Topology	Bidirectional replication	Post transcriptional processing of mRNAs – 5'capping	Principles of protein sorting and targeting into mitochondria	Ara Operon
3-12		Supercoiling – Twist - Writhe	Unidirectional replication	Polyadenylation	Principles of protein sorting and targeting into endoplasmic reticulum	Regulation of Ara operon
S-13	SLO-1	Linking number	DNA repair: Nucleotide excision and Mismatch repair	Splicing (including different types)	Principles of protein sorting and targeting into nucleus	Gal Operon
3-13	SLO-2	Change in linking number	Photo-reactivation, Recombination repair and SOS repair	Alternative splicing	Principles of protein sorting and targeting into chloroplast	Regulation of Gal operon
S 14-15	SLO-1 SLO-2	Lab 3: Quantitative analyses of genomic DNA	Lab 6: Quantitative analyses of plasmid DNA	Lab 9: Qualitative and quantitative analyses of RNA	Lab 12: Restriction digestion of genomic DNA	Lab 15: Polymerase Chain Reaction

1. James D Watson, Molecular Biology of Gene, Pearson Education, 2017 2. Robert Weaver, Molecular Biology, McGraw-Hill, 2011 Learning Resources

Benjamin Lewin, Genes IX, Benjamin Cummings, 2007
 G.M. Malacinski, David Friefelder, Essentials of Molecular Biology, 4th ed., Narosa Publishers 2008

Learning Assessment												
	Bloom's	Continuous Learning Assessment (50% weightage)								Final Examination (50% weightage)		
	Level of Thinking	CLA – 1 (10%)		CLA – 2 (15%)		CLA – 3 (15%)		CLA – 4 (10%)#		Final Examination (50% weightage)		
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%	
	Total	100 %		100 %		100 %		100 %		100 %		

Course Designers								
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts						
1. Dr. S. Sam Gunasekar, Orchid Chemicals and Pharmaceuticals Ltd., sam@orchidpharma.com	1. Dr. A. Gnanamani, CSIR-Central Leather Research Institute, agmani_2000@yahoomail.com	1. Dr. K. Ramani, SRMIST						
2. Dr. D. Gunaseelan, BIOCON Ltd., guna.sachin@gmail.com	2. Dr. Anbumani Sadasivam, CSIR-Indian Institute of Toxicology Research, anbumani@iitr.res.in	2. Dr. R. Muthukumar, SRMIST						

	urse ode	18BTC106J	Course Name			IMMUN	IOLOGY				ourse egory	,	С					onal C	Core					L 3	T 0	P 2	C 4	
С	requisi ourses se Offer	ng Department	Biotechr	nology	Co-requisit Courses		Data B	ook / Codes/St	tandards			gress ourse		Nil														
Cours	e Learr	ing Rationale (CLI	R): The purp	ose of learni	ing this course is	s to:					Le	earnii	ng	] [				Prog	jram L	earn	ing O	utcon	nes (F	PLO)				
CLR-	I: Ex	amine the science o	f immunology	and a detaile	d study of variou	us types of	immune cells				1	2	3		2	3	4	5	6	7	8			11	12	13	14	15
CLR-2		tinguish immune sy															-			ity								
CLR-C								n bio-molecular applications				earc			nabil		Ł		Ð									
CLR-		alyze the dysregulat							01300305		(Blo	ancy	Jent	-		pmer	Res	ge		ustai		n Wo		Finance	b			
CLR-		luate the knowledg							ens		king	oficie	tainm			velo	sign	Usa	Ilture	t & S		& Team Work	ion	∞ŏ	amin			
	urse Learning Outcomes (CLO):       At the end of this course, learners will         0-1 :       Describe the immune system and their structure and classification         0-2 :       Discuss about genetic control of antibody production, cellular immu				):				Level of Thinking (Bloom)	S Expected Proficiency (%)	S Expected Attainment (%)		<ul> <li>Lingineering movies</li> <li>Problem Analysis</li> </ul>	H Design & Development	T Analysis, Design, Research	Modern Tool Usage	T Society & Culture	Environment & Sustainability	H Ethics	· Individual &	<b>H</b> Communication	K Project Mgt.	⊥Life Long Leaming	K PS0-1	H PSO-2	H PSO-3		
											2	80	70	İ			H	H	M	Ē	H	-	H	М	H	М	H	H
CLO-											2	80		1			Н	Н	-	-	Н	М	Н	М	Н	Н	Н	Н
CLO-		scribe the role of the						er will be discus	ssed		2	80			M M - H H - F			H H	H H	M M	H H	M H	L M	H H	H H	H H		
								M	M	H	M	H	H	M	H	H	H											
	uration (hour) 15			15				1								5							1:	5				
Durat	SLO-			m	Immunoqlobulii			Isolation o	n I immune c	-	m Hur	man a	and	Major his	to con			mnlo	√/ <b>//</b> /////////////////////////////////	2	Hypersensitive reactions							
S-1	310-		,		Inninunogiobulii	II Structure		animals						viajoi ma	10-0011	ιματιν		inpie.		)								
	SLO-	Development an hematopoietic st		n oi the	Immunoglobulii			Antigen- a	antibody inte	ractior	ו			MHC – tj	pes ar	nd fun	ction				Type I and Type II rea							
S-2	SLO-	Myeloid and Lyrr	nphoid lineage		Antibodies biole properties	ogical and	functional	antibody a	affinity and a	widity				MHC Cla	ss I						Type I							
	SLO-	2 Lymphatic system	т		Proteolytic dige	estion of an	ntibodies	Hemaaggl	lutination re	action				MHC Cla							Immui introdi			es to	intect	ious (	disea	ses
S-3	SLO-	Lymphoid organ	s - types		Monoclonal and	tibodies pro	oduction	Coombs te	est – direct a	and inc	direct			antigen p Endoger					tions -	-	Viral d	liseas	e-HIV	/ infe	ction			
0-5	SLO-	, ,			Monoclonal and	tibodies ap	plications	precipitatio	on reaction					Diversity	of MH	C mol	lecules	;			Bacte	rial di	sease	-Tub	erculo	sis		
S 4-5	SLO-		y safety princip	oles and	Lab 4: Antigen Widal test	– Antibody	reaction I –	Lab 7: Out	chterlony ge	el diffus	sion			Lab 10: / Counter							Lab 1. assay					unos	orber	ıt
• •	SLO-	Agglutination pri Rhesus group ty	nciple, blood g pes	roup types	Widal test - slid method	de method a	and test tube	Single rac	dial immuno	diffusio	on (SF	rid)	,	Antigon Antibody interaction			Types of ELISA, Direct vs Indire Dot ELISA Sandwich ELISA				t ELI	SA,						
S-6	SLO-	incompatible blo	od transfusion	and	B Cell different	tiation		· · · · · · · · · · · · · · · · · · ·	, zone of eq ve Immuno					Standard and test antigen Rocket Immunoelectrophoresis				Paras	itic dis	sease	-Mala	aria						
S-7	SLO-	Receptors of Inn	ate Immune sy	ystem	B cell receptor transduction	structure a	and B cell signa	al passive Im	nmunodiffus	ion				Biology of T lymphocyte				Evadii	ng Me	echan	isms	of pat	hoge	ns				
3-1	SLO-	2 Types of Immune	e cells, Innate	Immunity	Antibody divers	sity			on reaction				T cell receptors and interaction with MHC				НС	IC Vaccine history and principle										
S-8	SLO-	Anatomical and	Physiological b	siological barriers Light chain synthesis Active Immunoeliffusion – Rocket immunoelectrophoresis T-cell maturation									Active	and	passiv	ve Im	muniz	ation										
3-0	SLO-	2 Acquired Immun	ity, clonal sele	ction theory	Heavy chain sy structure	nthesis Cy	rtokine recepto	or SDS-PAG	E and West	tern blo	ot			T-cell activation and differentiation				DNA vaccine, Edible vaccine and Adjuvants										

S 9-10	SLO-1 SLO-2	Lab 2: Total Leukocyte count	Lab 5: Antigen – Antibody reaction II -rapid plasma reagin (RPR) test	Lab 8: Repeat/Revision of experiments	Lab 11: Immunoprecipitation	Lab 14: Enzyme linked Immunosorbent assay (ELISA) – Plate			
S-11	SLO-1	Types of blood cells Leukocyte counting	Flocculation reaction Rapid Plasma Reagin (RPR) test		Thymic selection – Positive and negative selection	Tumor Immunology introduction			
5-11	SLU-Z	Comparative immunity - Plant Immune system	Cytokine types and function	Precipitation reaction, Immunoprecipitation	T-cell activation and cytokine secretion	Evidence for Tumor Immunity			
S-12	5-12	Vertebrate and Invertebrate Immune system	Role of cytokines in diseases		Result interpretation Counter current immuno electrophoresis	Tumor immuno therapy			
0-12	SLO-2	Immunogens, Antigens and Haptens	Complement system	Immunohistochemistry	Cytokine control of TH1 and TH2 CD4+	Autoimmunity introduction			
S-13	SLO-1 R	Requirements for immunogenicity; major classes of antigens	Regulation of complement pathway	TIOW CVTOMETRY FLISA and Types	Function of CD8+ T cells, T Regulatory cells	Genetic Basis of Autoimmunity			
3-13	SIU-7	antigen recognition by T and B lymphocytes		Cell culture and experimental models, analysis of gene expression	T-cell and B-cell cooperation, Pathways of Activation	Classification of auto-immunity			
S 14-15	SLO-1 SLO-2	Lab 3: Differential Leukocyte count	Lab 6: Single radial immunodiffusion (SRID)	Lab 9: Active Immunodiffusion I - Rocket Immunoelectrophoresis	Lab 12: SDS-PAGE	Lab 15: Western blotting			
Learning Resources 1. Sudha Gangal, Shubhangi Sontakke, Textbook of basic and clinical immunology, Universities Press, 2013 2. Jenni Punt, Sharon Stranford, Patricia Jones, Judith A Owen, Kuby Immunology, 8 th ed., Freeman and Company, 2018									

Learning Ass	essment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weigl	htage)			Final Examinatio	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	l (10%)#		n (50% weightage)
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Total	100	0 %	10	0%	100	0 %	10	0 %	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. C. N. Ramchand, Saksin Life sciences Pvt Ltd, Chennai, ramchand@saksinlife.com	1. Dr. Joe Varghese, CMC Vellore, joevarghese@cmcvellore.ac.in	1. Dr. S. Thyagarajan, SRMIST
2. Dr. Karthik Periyasamy, Aurobindo Pharma Limited, Hyderabad, karthikmpk@gmail.com	2. Prof. K Subramaniam, IITM, Chennai, subbu@iitm.ac.in	2. Dr. S. Nageswaran, SRMIST

Cour Coo		18BTC107J	Course Name	BIOPR	OCESS PRINCIPLES		Cours Catego		С	C Profession					nal Co	re				L 3	T 0	P C 2 4	_
Co	equisite urses e Offering	18BTC103J g Department	Biotechnology	Co-requisite Courses	Nil Data Book	/ Codes/Standards		Cour	ssive ses	Nil													
Course	e Learnin	g Rationale (CL	R): The purpose of	f learning this course is to:				Lear	ning					Prog	ram Le	earnir	ng Outo	omes	(PLC	)			
CLR-2 CLR-3	: Exam : Asse	nine the process of states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in the metabolic states in	of media formulation a stoichiometry and en	the fermentation process and sterilization kinetics ergetics of the biochemica	l process			1 2 (E			<u>1</u> 2	3	earch 4	5	6		-	1(			13	14 1	ō
CLR-5	: Interp	oret the microbial	growth and kinetics of	d designing a bioreactor during formation of product engineering and the workir				evel of I hinking (Bloom)	Expected Proliciency (%) Expected Attainment (%)		T Engineering Knowledge	Design & Development	⊥ Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	ication	Project Mgt. & Finance	Life Long Learning			
CLO-1	ourse Learning Outcomes (CLO):       At the end of this course, learners will be able to:         LO-1:       Explain the various aspects of fermenter and types of fermentation process         LO-2:       Practice the components of media and its prerequisites to produce bioproducts							2 8	0 70			Н		L Modern		Н	- F	I H	-	Н	H PS0-1	- OSA H H H	
CLO-3 CLO-4	:         Practice the components of media and its prerequisites to produce bioproducts         3         80         70           :         Interpret the stoichiometry and energetics of product formation mediated by cell growth         3         80         70           :         Analyze and interpret key elements of the fermentation data to operate the bioreactor accordingly         2         80         70           :         Apply various models to understand the kinetics and mechanism of microbial growth         3         80         70							-	H H H H	- H - H - H	I H I H	-	H H H	H H H	H F H F H F	1							
CLO-6	CLO-6 : Employ fermentation skills to synthesize value added bioproducts						3 80 70 H H H H H - H -							I H	-	Η		H F					
Duratio	on (hour)		15		15	15 15									15								
S-1	SLO-1	Outline of an inte	egrated bioprocess	Criteria for a good	medium	Stoichiometric of cell	growth			Types o	f biorea	ctor				Mathematical models							
	SLO-2	Upstream and d	ownstream bioproces	ss Types of media		Stoichiometric of prod	luct forma	tion		Strategi	es for c	noosinę	g a bio	oreact	or	Mathematical Models -					ssifica	tion	
S-2	SLO-1	production	eets of primary metal	biotechnology	al media for microbial	Elemental balance, de	egree of r	educti	on	Modes o	f opera	tion of	biorea	actor		٨	lodel fo	rmula	tion				
	SLO-2	Process flow she metabolite produ	eets of secondary uction	Medium formulatio source	n – Carbon and Nitrogen	Substrate and biomas	SS			Batch o	peration	– The	ory			L	Instruct	ured,	Vonse	grega	ted ma	odels	
6.2	SLO-1	Types of fermen	tation	Medium formulatio inducers	n – Growth factor and	Electron balance				Growth	kinetics	of bate	ch cul	ture		٨	lonod r	nodel					
S-3 -	SLO-2	Fermented prod	ucts	Natural and synthe	etic media	Yield coefficient of bio	omass and	l prod	uct	Solving	problen	n in gro	wth k	inetics	;		Blackma nodels	n, tes	sier, m	ioser a	and co	ntois	
S 4-5	SLO-1 SLO-2	Lab 1 - Types of	fermentation	Lab 4 - Medium for the biomass produ	rmulation to maximize ction	Lab 7 - Batch growth of doubling time	kinetics -	Evalu	ation	Lab 10:	Repeat	/Revisi	on of	experi	iments		ab 13 - nd gluo		tificati	on of l	oiomas	s, ethan	ol
S-6	SLO-1							;		Aonod r hibitior		nodifi	ed for	substr	ate								
3-0	SLO-2	SLO-2 Fermenter design Plant culture media				Determination of stoic	chiometric	coeffi	icients	Perform	ance eo	uation	of a l	oatch i	reacto	٠٨	lodified	Mono	d moo	lels			
S-7	SLO-1	Standard geome bioreactor (STR)	etry of stirred tank )	Design of experime	ents	Solving problem in sto coefficients				Solving problem related to batch reactor			L	Instruct	ured E	Batch	Growth	n Mode	els				
3-1	SLO-2	Basic features o	f STR – Agitation	Plackett - Burman	design (PBD)	Solving problem in sto coefficients	oichiometi	ic		Fed-bat	ch oper	ation –	theor	у		Product Formation Kinetics							
5.8	SLO-1 Basic features of STR – Aeration Response surface methodology (RSM)				methodology (RSM)	Energetic enclusis of microbiol growth and			Perform reactor						S	Structur	ed kin	etics N	lodel				
3-0	S-8 Basic features of STR – Miscellaneous			us Artificial neural net	work (ANN)	Oxygen transfer in aerobic cu				Solving reactor	problen	relate	d to f	ed-bat	ch		Structur nodelin		duct fo	ormatio	on kine	etic	

SRM Institute of Science & Technology – Academic Curricula (2018 Regulations)

S	SLO-1	Lab 2 - Bioreactor operation	Lab 5 - Screening of process parameters	Lab 8 - Batch growth kinetics - Evaluation	Lab 11 - Preparation of immobilized	Lab 14 - Production of ethanol by
9-10	SLO-2	(demonstration)	for bacterial biomass production by PBD	of specific growth rate	cells/enzyme	Saccharomyces cerevisae
S-11	SLO-1	Summary of conventional bioreactor systems	Sterilization	Oxygen transfer in aerobic culture – problem	Continuous operation - Theory	Compartment model
5-11	SLO-2	Summary of novel bioreactor systems	Kinetics of thermal death of microorganism	Determination of yield coefficients	Chemostat and Turbidostat	Williams two compartment model
S-12	SLO-1	Monitor and Control of physical parameters	Solving problem in sterilization kinetics	Solving problem in yield coefficients	Performance equation of a continuous reactor	Ramakrishna Model
3-12	SLO-2	Monitor and Control of chemical parameters	Types of sterilization - batch	Solving problem in yield coefficients	Dopt – Significance	Product formation models
S-13	SLO-1	Monitor and Control of biological parameters	Types of sterilization - Continuous	Heat evolution in aerobic culture	Solving problem related to Dopt	Luedeking-piret Model
3-13	SLO-2	Summary of Monitor and Control of fermentation parameters	Air sterilization	Analyze thermodynamic efficiency of cell growth	Stability analysis of bioreactor	Growth and non-growth associated kinetics
S 14-15		Lab 3 - Real-time monitoring of process (pH, temp etc.) parameters in bioreactor	Lab 6 - Media Sterilization	Lab 9 - Batch growth kinetics - Evaluation of yield coefficient	Lab 12 - Comparison of free and immobilized enzyme/cells kinetics	Lab 15 - Evaluation of ethanol yield and productivity by S. cerevisae
Learni Resou	•	Butterworth– Heinemann, 2017	taker, Allan, Principles of Fermentation Tech ng Principles, 2 nd ed., Academic press, 2012	GmbH & Co. 2016	is, Bioreactors: design, operation and novel a	pplications, 1sted., Wiley-VCH Verlag

Learning Asse	essment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examination	n (E09/ woightage)
	Level of Thinking	CLA –	1 (10%)	CLA – 2	2 (15%)	CLA –	3 (15%)	CLA – 4	4 (10%)#		n (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level I	Understand	2070	2070	1570	1570	1370	1070	1576	1570	1570	1570
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Leverz	Analyze	2070	2078	2070	2070	2070	2070	2070	2070	2070	2070
	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
Level 5	Create	1070	1076	1576	1370	1370	1370	1370	1570	1570	1370
	Total	Total 100 %			)%	10	0 %	10	0 %	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. P. BalaKumaran, Proklean Technologies (P) Limited, Chennai,genbalu86@gmail.com	1. Prof. K Subramaniam, IITM, Chennai, subbu@iitm.ac.in	1. Dr. M. VenkateshPrabhu,SRMIST
2. Dr. Karthik Periyasamy, Aurobindo Pharma Limited, Hyderabad, karthikmpk@gmail.com	2. Prof. R. B. Narayanan, SVCE, Chennai, rbn@svce.ac.in	2. Dr. V. Vinoth Kumar, SRMIST

Cou Coe		18BTC108J	Course Name		PLAN	T BIOTECHNOLOGY			ourse tegory	,	С	C Professional Core										L 3	T 0	P 2	C 4	
Co	equisite ourses e Offerin	18BTC103J g Department	Biotechno	logy	Co-requisite Courses	Nil Data Book	/ Codes/Standards			gressi ourse		Nil														
Course	e Learnii	ng Rationale (CLI	R): The purpos	se of learnin	ng this course is to:				Le	earnir	ng					Prog	ram L	earni	ing Ou	tcom	nes (P	PLO)				
CLR-1	: Illust	rate the genome of	organization in pl	lants and its	regulations				1	2	3	1	2	3	4	5	6	7					12	13	14	15
					of transgenic plant		o 110								÷			lity								
CLR-3	: Use : Inter	pret the mechanis	ms for plant to c	ope up for b	iotic and abiotic str	for growth and developm resses	ents		(moo	(%) /	t (%)	000	D D	ant	searc			Sustainability		ork		8				
CLR-5	: Appl	/ the classical and	l modern plant b	reeding tech	hniques for crop im	provements			ig (Bl	siency	meni		Sis low	opme	n, Re	sage	e	Susta		am V		inan	ing			
CLR-6	: Use	the knowledge to	increase plant pr	roduction an	nd protection throug	h biotechnological appro	aches		hinkir	Profic	Attair	N N	nalys	Devel	Desig	sol Us	Cultu	ent &		& Te	cation	jt. & F	Leam			
Course	e Learnii	ng Outcomes (CL	ts as production systems by altering the plant hormones for growth and developments mechanisms for plant to cope up for biotic and abiotic stresses ssciel and modern plant breeding techniques for crop improvements wedge to increase plant production and protection through biotechnological approaches omes (CLO): At the end of this course, learners will be able to: the basics of plant genomes organizations and expressions the basic dent dent dent dent dent dent dent dent						Environment &	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Leaming	PSO - 1	PSO-2	PS0-3									
						าร			2	80	70	70 - H - H 75 H H H H H -				-	-	Н	-	-	-	Н	Н	Н		
CLO-2 CLO-3					oulations in plants Ilture for mass mult	tiplications			2	85 75	75 80	0 <u>H H H H H</u> -				-	H H	Н -	H H	-	H H	-	H H	H H	H H	
CLO-4	: Disc	iss the molecular	aspects of plant	adaptability	to various stresses	s			2	85	80	ŀ	H M	Н	М	-	-	М	-	Н	-	Н	-	Н	Н	Н
	<ul> <li>D-5: Explain the significance of plant breeding and genetic manipulations of plants for econo</li> <li>D-6: Explain the basic concepts and to use the plant biotechnology techniques for crop impr</li> </ul>						ance 3 85 80 2 80 75 H H H H H - M H H H H H H H H H H						Н	-	H H	-	H H	H H	H H							
[				nechnology technic		15				75	ſ				п	-	п	п	п	-			п	п	п	
Duratio	on (hour)	Introduction and	15	nalagular		15								1:	5							15	5			
	SLO-1	Introduction and biology	scope or plant n	noiecular	Agrobacterium me	diated gene transfer	Plant Tissue culture			P	Plant stre	sses						Introdu	ction	to cro	op im	prove	ment			
S-1	SLO-2	DNA, Chromatin structure	, and Chromoso	me	The biology of Agr	obacterium	Plasticity and totipote	ncy of	plant o	cells	В	Biotic stre	ess					The distant past - Cro and beyond					o plan	t dom	estica	ation
	SLO-1	Chloroplast gene	ome		Vector for plant tra	nsformations	The culture environm	ent			P	Plant – p	athoge	n inter	ractior	ıs			The re	cent	past -					
S-2	SLO-2	Genome Structu gene regulations		pression,	Ti plasmid		Physical and chemica	al facto	ors		P	Prokaryo	tes, fui	ngi and	d virus	ses			Hybrid	seed	l prod	luctior	n			
	SLO-1	Mitochondrial ge	enome	i	t-DNA transfer and	l integration	Plant growth hormone	es			D	)isease l	resista	nce				1	Import	ance	of gre	en re	evoluti	on		
S-3	SLO-2	Genome Structu gene regulations	5	, ,	Arabidopsis thaliar		Culture types					latural d	isease	resista	ance i	in plar	nts		The (F	irst) (	Green	Revo	olutior	ו		
S 4-5	SLO-1 SLO-2	Lab 1: Isolation of tissues	of genomic DNA		Lab 4: Isolation an preparation of Ti p		Lab 7: Preparation of media	plant t	tissue (	culture	e L	ab 10: F	Repeat	/Revisi	ion of	exper	riment		Lab 13 fusion					n, elec	ctro-	
S-6	SLO-1 Nuclear genome Direct gene transfer methods				Production of second	ary me	etabolit	es	В	Biotechn	ologica	l appro	oach				Breedi		U							
3-0	SLO-2 Genome size and organization Advantages and disadvantages			isadvantages	Carbohydrates				C	)ver exp	ressio	n of PF	R-prot	eins			Advan	ces ir	1 bree	ding	techn	ologie	es			
S-7	SLO-1	Introduction to g		sion	Vectors		Metabolic engineering	g			H	lerbs as	biotic	stress	factor	s			Practic	ing N	low a	nd				
3-1	SLO-2	Regulation of ge expressions	ene		Optimization and b	binary vectors	Lipids					ypes of						into the future								
S-8	SLO-1	, , , , , , , , , , , , , , , , , , , ,						ng		Applica	tions	s of br	reedin	ng												
	S-8 Organellar Self-Splicing Introns and Horizontal DNA transfer Effect of selectable man			e marker system to	Proteins				P	Plant bas	ed det	oxifica	tion				Breedi	ng fo	r impr	roved	huma	an hea	alth			

SRM Institute of Science & Technology – Academic Curricula (2018 Regulations)

s	SLO-1	Lab 2: Extraction of total RNA from plant	Lab 5: Agrobacterium mediated gene	Lab 8: Direct organogenesis of plants	Lab 11: Enhanced production of secondary metabolites in suspension cultures by	Lab 14: Haploid productions/
9-10	SLO-2	tissues	transformation in Arabidopsis thaliana	Lab 6. Direct organogenesis of plants	using elicitors	Somatic embryogenesis
S-11			The genetic manipulation of pest resistance crop plants	Emerging applications	Abiotic stresses - nature	Breeding
5-11	SLO-2	Post Transcriptional Gene Silencing (PTGS)	Bacillus thuringiensis (Bt) approach	Producing fine chemicals	Plant responses	For drought tolerance
0.40		Micro RNA	The use of Bt as a biopesticide	Plant derived compounds	The nature of water deficit stress	Innovations
S-12		Production and interfering with gene for silencing	Bt-based genetic modification of plants	As a drugs	Various approaches for tolerance	In agriculture
0.40	SLO-1	DNA instability	Development of pest resistant crops	Current demand from plants	Salt stress	Revolutions
S-13	SLO-2		Clean gene technology – Copy nature strategy	Alternative fuels	Cold and heat stress	The Second Green Revolution
S	SLO-1		Lab 6: Demonstration of electroporation	Lab 9: Callus induction and indirect	Lab 12: Quantification of stress induced	Lab 15: Quantification of t-DNA
14-15	SLO-2	analysis of nucleic acids from plant tissues	method of gene transformation in plants	organogenesis	secondary metabolites using HPLC	expressions from plants

 
 Learning Resources
 1. Slater. A, Scott.N.W, Fowler,M.R, Plant Biotechnology - The genetic manipulation of plants, Oxford University Press 2008
 3. Carole L. Bassett, Regulation of gene expression in plants - The role of transcript structure and processing. Springer, 1st ed., 2007

 2. C Neil Stewart Jr. Plant Biotechnology and Genetics, John Wiley & Sons, Inc., New Jersey 2008
 3. Carole L. Bassett, Regulation of gene expression in plants - The role of transcript structure and processing. Springer, 1st ed., 2007

Learning As	sessment									0	
	Bloom's			Conti	nuous Learning Ass	essment (50% weigl	htage)			Einal Examination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#		r (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Lever	Understand	20%	20%	13%	13%	10%	13%	10%	13%	10%	15%
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 2	Analyze	2070	2070	2076	2070	2070	2070	2070	2070	2070	2070
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
Level 5	Create	10%	10%	13%	13%	10%	13%	10%	13%	10%	15%
	Total 100 %		) %	100	0%	100	0%	10	0%	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Senthil, EID Parry, Chennai, parrynutraceuticals@parry.murugappa.com	1. Prof. Usha Vijayraghavan. IISc, Bangalore, uvr@mcbl.iisc.ernet.in	1. Dr. Sarada, SRMIST
1. Dr. C. N. Ramchand, Saksin Life sciences Pvt Ltd, Chennai, ramchand@saksinlife.com	2. Prof. K Subramaniam, IITM, Chennai, subbu@iitm.ac.in	2. Dr. Pachaiappan, SRMIST



Course Code	18CHC203T	Course Name	CHEMICAL PROCESS CALCULATIONS	Course Category	С	Professional Core	L 3	T 1	P 0	C 4
Pre-requis Courses	NII		Co-requisite Courses	Progr		Nil				
Course Offe	ring Department	Chemical Engineering	Data Book / Codes/Standards	Nil						

Course Learning Rationale (CLR): The purpose of learning this course is to:	L	Learning Program Learning Outcomes (PLO)																
CLR-1: Explain the system of units, predict the PVT properties of Ideal gases, understand the composition of various mixtures	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14 15	j
CLR-2: Formulate and solve material balance for non-reactive chemical process systems										y.								
CLR-3: Formulate and solve material balance for reactive chemical process systems							arch			abilit								
CLR-4: Formulate and solve energy balance for chemical process systems	(Bloom)	y (%)	nt (%)	dge		ent	se			aine		Work		g				
CLR-5: Formulate and solve material balance for simple process flow sheets.	g (B	oficiency	men	wle	<u>.</u>	mdo	n, Re	age	ø	Sustainability				Finance	ning			
CLR-6: Explain mass and energy balance for reactive and non-reactive systems	Thinking	ofic	Attainment	х И	Analysis	Development	Design,	Tool Usage	Culture	∞ŏ		Team	tion	≪ð	earni			
		dPr		ring	An	& De	, De	100 1	s C	nen		al &	ica	Mgt.	<u> </u>			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expecte	Expected	Engineering Knowledge	Problem	Design 8	Analysis,	Modern	Society	Environment	Ethics	Individual	Communication	Project N	Life Long	PSO - 1	PSO - 2 PSO - 3	
CLO-1: Do unit conversions, Predict PVT properties of gases using ideal gas equation, calculate the composition of mixtures	2	80	75	Н	Н	-	-	-	-	-	-	-	-	-	-	Н		
CLO-2: Solve the material balance for non-reactive Chemical process systems	2	80	75	Н	Н	-	-	-	-	-	-	-	-	-	-	Н	Η -	
CLO-3: Solve the material balance for the reactive chemical process systems	2	80	75	Н	Н	М	-	-	-	-	-	-	-	-	-	Н	Η -	
CLO-4 : Solve the energy balance for chemical process systems		80	75	Н	Н	М	-	-	-	-	-	-	-	-	-	H	M M	
CLO-5: Solve the material balances including recycle, purge streams for simple process flow sheets.		80	75	Н	Н	М	-	-	-	-	-	-	-	-	-	H	L M	
CLO-6 : Perform mass and energy balances for varied chemical systems		80	75	Н	Н	-	-	-	-	-	-	-	-	-	-	H		

Durat	ion (hour)	12	12	12	12	12
S-1	510-1	Concept of various systems of Units and dimensions.	Law of conservation of mass	Chemical reactions and stoichiometric equations	Thermo physics: Heat capacity, Kopp's rule	Introduction to material balance for sequential processes.
3-1	SLO-2	Unit conversions	Formulation of overall and individual component balance equations	Limiting reactant, excess reactant,	Sensible heat, latent heat and enthalpy	Introduction to material balance for sequential processes.
S-2	SLO-1	Various Temperature scales	Material balance for non-reactive chemical process systems: mixing	Conversion, Degree of completion, selectivity and yield.	Energy balance for non-reactive systems	Basic concepts of recycle and purge streams
3-2	SLO-2	Types of Pressure	Material balance for non-reactive chemical process systems: mixing	Conversion, Degree of completion, selectivity and yield.	Energy balance for non-reactive systems	Basic concepts of recycle and purge streams
S-3	SLO-1	Temperature and Pressure unit conversions	Problems in mixing	Problem solving in Conversion	Problem solving on sensible heat	Basic concepts of bypass stream
3-3	SLO-2	Concept of mole	Problems in mixing	Problem solving in Degree of completion, selectivity and yield.	Problem solving on sensible heat	Basic concepts of bypass stream
S-4	SLO-1	Predicting PVT properties of gases using ideal gas law	Material balance problems on crystallization process	Material balances for processes with reactions.	Thermo chemistry	Material balances for systems with recycle stream.
3-4	SLO-2	Predicting PVT properties of gases using ideal gas law	Material balance problems on crystallization process	Material balances for processes with reactions.	Standard Heat of formation, standard heat of combustion	Material balances for systems with recycle stream.
S-5	SLO-1	Problems using Ideal gas law	Material balance problems on drying Process	Tutorial in Material balances for processes with reactions.	Hess law	Tutorial on Recycle Stream
3-0	SLO-2	Problems using Ideal gas law	Material balance problems on drying Process	Tutorial in Material balances for processes with reactions.	Tutorial on Thermochemistry	Tutorial on Recycle Stream
S-6	SLO-1	Basis of calculations	Material balance problems on membrane separation process	Combustion as a special case of material balance with reactions.	Heat of reaction from heat of formation or combustion	Material balances for non-reactive systems with bypass and purge stream
5-0	SLO-2	Basis of calculations	Material balance problems on membrane separation process	Combustion as a special case of material balance with reactions.	Tutorial on Thermochemistry	Material balances for non-reactive systems with bypass and purge stream

S-7	SLO-1	Composition of mixtures – Solids	Material balance problems on distillation process	Fuels, types of fuel, flue gas	Tutorial on Thermochemistry	Tutorial on Multiple processes
3-1	SLO-2	Composition of gas mixtures - mole, mass, volume and partial pressure.	Material balance problems on distillation process	Orsat analysis, theoretical air, excess air	Tutorial on Thermochemistry	Tutorial on Multiple processes
S-8	SLO-1	Density of gas mixtures	Tutorial on distillation	Problems on Combustion	Enthalpy changes in reactions with different temperatures	Material and energy balance analysis for multi-unit processes
3-0	SLO-2	Density of gas mixtures	Tutorial on distillation	Problems on Combustion	Problem solving on Enthalpy for reactive systems	Case studies with simple process flow sheets
S-9	SLO-1	Problems on composition	Material balance problems on extraction process	Problems on Combustion	Problem solving on Enthalpy for reactive systems	Case study 1
3-9	SLO-2	Problems on composition	Material balance problems on extraction process	Problems on Combustion	Problem solving on Enthalpy for reactive systems	Case study 1
S-10	SLO-1	Problems on composition	Partial saturation and humidity, types of humidity	Analysis of products of combustion	Problem solving on Enthalpy for reactive systems	Case study 2
3-10	SLO-2	Problems on composition	Relative humidity and percentage humidity	calculation of excess air	Theoretical flame temperature.	Case study 2
S-11	SLO-1	Solutions and their concentrations	Material balances involved in two-phase gas-liquid systems as in humidification and dehumidification.	Tutorial on excess air	Theoretical flame temperature.	Case study 3
	SLO-2	Solutions and their concentrations	Tutorial on Humidification	Tutorial on excess air	Tutorial on Energy Balance	Case study 3
S-12	SLO-1	Tutorial on concentrations	Tutorial on Humidification	Tutorial on Reactive systems	Tutorial on Energy Balance	Tutorial on Mass balance for process flowsheets
3-12	SLO-2	Tutorial on concentrations	Tutorial on Humidification	Tutorial on Reactive systems	Tutorial on Energy Balance	Tutorial on Mass balance for process flowsheets

Learning Resources

1.

David M. Himmelblau, James B. Riggs, Basic Principles and Calculations in Chemical Engineering, 8th ed., Pearson - Prentice Hall International 2. B. I. Bhatt, S. B Thakore., Stoichiometry, 5th ed., Tata McGraw-Hill Publishing Company, New Delhi

B. Lakshmikutty, K. V. Narayanan, Stoichiometry and Process Calculations, PHI Publishers, Delhi Richard M. Felder, Ronald W. Rousseau, Elementary Principles of Chemical Processes, 3rd ed., 3. 4. John Wiley & Sons, Inc.

nent											
Dia ana'a			Contir	nuous Learning Ass	essment (50% weigl	htage)			Final Examination	(E00/ woightage)	
	CLA –	1 (10%)	CLA – 2 (15%)		CLA – 3 (15%)		CLA – 4	(10%)#		i (50% weigi itage)	
Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Remember	10.0/		20.0/		20.0/		20.0/		200/		
Understand	40 %	40 % -				-	30 %	-	30%	-	
Apply	10.0/		10.0/		40.0/		10.0/		400/		
Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-	
Evaluate	20.0/		20.0/		20.0/		20.0/		200/		
Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-	
Total 100 %				100 % 1			100	)%	100 %		
	Bloom's Level of Thinking Remember Understand Apply Analyze Evaluate Create	Bloom's Level of Thinking     CLA – Theory       Remember Understand     40 %       Apply Analyze     40 %       Evaluate     20 %	Bloom's Level of Thinking         CLA – 1 (10%)           Remember         40 %         -           Understand         40 %         -           Apply         40 %         -           Kanalyze         20 %         -	Bloom's Level of Thinking         CLA - 1 (10%)         CLA - 2           Remember Understand         40 %         -         30 %           Apply Analyze         40 %         -         40 %           Evaluate         20 %         -         30 %	Bloom's Level of Thinking         CLA – 1 (10%)         CLA – 2 (15%)           Remember         40 %         -         30 %         -           Understand         40 %         -         40 %         -           Apply         40 %         -         40 %         -           Evaluate         20 %         -         30 %         -	Bloom's Level of Thinking         CLA - 1 (10%)         CLA - 2 (15%)         CLA - 2           Remember         40 %         -         30 %         -         30 %           Understand         40 %         -         40 %         -         30 %           Apply         40 %         -         40 %         -         30 %           Evaluate         20 %         -         30 %         -         30 %	Continuous Learning Assessment (50% weightage)           Level of Thinking         CLA - 1 (10%)         CLA - 2 (15%)         CLA - 3 (15%)           Remember         M0%         -         30%         -         30%         -           Understand         40%         -         30%         -         40%         -         40%         -           Apply         40%         -         40%         -         30%         -         40%         -           Evaluate         20%         -         30%         -         30%         -         -	$\begin{tabular}{ c c c c c c c c c c } \hline & \hline & \hline & \hline & \hline & \hline & \hline & \hline & \hline & \hline $	$\begin{tabular}{ c c c c c c c c c c } \hline & \hline & \hline & \hline & \hline & \hline & \hline & \hline & \hline & \hline $	$\begin{tabular}{ c c c c c c c c c c } \hline \hline CLA - 1 (10\%) & CLA - 2 (15\%) & CLA - 3 (15\%) & CLA - 4 (10\%) \# & Final Examination \\ \hline \hline CLA - 1 (10\%) & CLA - 2 (15\%) & CLA - 3 (15\%) & CLA - 4 (10\%) \# & Final Examination \\ \hline \hline CLA - 1 (10\%) & CLA - 2 (15\%) & CLA - 3 (15\%) & CLA - 4 (10\%) \# & Final Examination \\ \hline \hline CLA - 1 (10\%) & Practice & Theory & Practice & Theory & Practice & Theory & Practice & Theory & Practice & Theory & Practice & Theory & Practice & Theory & Practice & Theory & Practice & Theory & Practice & Theory & Practice & Theory & Practice & Theory & Practice & Theory & Practice & Theory & Practice & Theory & Practice & Theory & Practice & Theory & Practice & Theory & Practice & Theory & Practice & 10\% & - & 30\% & - & 30\% & - & 30\% & - & 30\% & - & 30\% & - & 30\% & - & 30\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% & - & 40\% $	

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd.,	1. Dr. Lima Rose Miranda, Anna University, limamiranda2007@gmail.com	1. Mr. V. Ganesh, SRMIST
2. Mr. S. T. Kalaimani, CPCL, Chennai	2. Dr. T. R. Sundararaman, Rajalakshmi Engineering College, sundararaman.tr@rajalakshmi.edu.in	2. Ms. E. Kavitha, SRMIST

Course Code	18CHC205T	Course Name	CHEMICAL ENGINEERING FLUID MECHANICS		urse egory	С		Prof	essional Core		L 3	Т 0	P 0	C 3
Pre-requ Course	isite Nil		Co-requisite Courses		Progre	ssive ses	Nil							
Course Of	ering Department	Chemic	ical Engineering Data Book / Codes/Stan	dards	Nil									
	arning Rationale (CLF	, , ,	rpose of learning this course is to:		Lear	ning			Program Lear	ning Outcomes (	PLO)			
CLR-1:	Describe the behavior	of fluids, mec	chanics of fluids (fluid statics and fluid dynamics) and fluid flow phenomer	ia	1 2	2 3		1 2 3 4	5 6 7	8 9 10	11 1	2   13	3   14	15

CLR-2 :	Demonstrate the Kinematics of flow										>							-	
CLR-3 :	Analyze the flow past immersed bodies							гç			ability								
CLR-4 :	: Elucidate the transportation of fluids				dge		ant	sea			taina		Work		8				
CLR-5 :	R-5: Compare the metering of fluids				Ð	s	elopmer	, Re	age	Ð	Sust		≤ E		Finance	g			
CLR-6 :	LR-6: Describe fluid flow and the its transportation.				Knc	alysi	velo	sign	∩°	Culture	8		Team	ication	∞ŏ	arni			
		Thinking	d Profici	d Attainme	ring	Å	& De	, De	Tool	ه ر	neni		οŏ	licat	Mgt.	gLe			
Course L	earning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	te	Expected	Engineering Knowl	Problem	Design 8	Analysis	Modem .	Society 8	Environn	Ethics	Individual	Communi	Project N	Life Long	PSO - 1	PSO - 2	PSO - 3
CLO-1 :	Describe fundamental knowledge in fluids properties, classification, flow in boundary layers, and pressure measurements	1	80	70	Н	Н	L	-	-	-	-	-	-	-	-	-	Н	Н	-
CLO-2 :	Interpret Bernoulli equation, Friction factor and pressure measurements	2	85	75	Н	Н	М	М	М	-	-	-	-	-	-	-	Н	Н	-
CLO-3 :	Interpret the Ergun equation, Navier–Stokes, settling velocity and fluidization	2	80	75	Н	М	М	-	М	-	-	-	-	-	-	-	Н	Н	-
	Differentiate types of seals, valves and pumps		85	75	М	L	М	М	М	-	-	-	-	-	-	-	L	Н	-
CLO-5 :	Differentiate flow meters and flow rate calculations		85	75	Н	Н	Н	-	М	-	-	-	-	-	-	-	L	Н	-
CLO-6 :	Understand the flow behavior of fluids and their handling.																		

Durat	on (hour)	9	9	9	9	9
	SLO-1	Introduction to fluids	Streamlines and stream tubes	Drag, drag coefficients	Introduction to: pipe and tubing	Introduction to: Metering of fluids
S-1	SLO-2	Continuum hypothesis, Forces on fluids	Eulerian and Lagrangian descriptions Continuity equation	Drag coefficients of typical shapes	Transportation of fluids	Types of metering of fluids
	SLO-1	Tutorial on forces	Bernoulli equation	Ergun equation	Joints and fittings, Flanges	Constructional features of venturi meter
S-2	SLO-2	Newtonian and Non-Newtonian fluids	Pump work in Bernoulli equation	Navier–Stokes equation	Stuffing boxes, Mechanical seals	working principles of venturi meter
S-3	SLO-1	Hydrostatic equilibrium	Tutorial on Bernoulli equation	Settling velocity		Derivation for flow measurement by using Bernoulli equation
5-5	SLO-2	Fluid statics - pressure distribution	Tutorial on Bernoulli equation	Free and hindered settlings	Plug cocks, ball valves, check valves	Tutorial on venturi meter
S-4	SLO-1	Tutorial on pressure	Friction factor	Terminal settling velocity	Classification and selection and design of pumps	Constructional features of orificemeter
5-4	SLO-2	Eddy viscosity	relationships between skin-friction parameters	Tutorial on Settling velocity	Design of blowers and compressors	working principles of orificemeter
	SLO-1	Reynolds number	Flow of incompressible fluids	Tutorial on Settling velocity		Derivation for flow measurement by using Bernoulli equation
S-5	SLO-2	laminar and turbulent nature	Flow of incompressible fluids in conduits and thin layers	Tutorial on Free and hindered settlings	Pumps: developed head, suction lift, power requirement	Tutorial on orificemeter
	SLO-1	laminar and turbulent flow in boundary layers, boundary layerformation in tubes	Friction factor, Moody diagram	Stokes' law	Constructional features of single suction volute centrifugal pump	Constructional features and working principles of Pitot tube
S-6	SLO-2	Unsteady flows	Relationships between average velocity and maximum velocity	Newton's law for settling	Working principle of single suction volute centrifugal pump	Derivation for flow measurement by using Bernoulli equation

S-7	SLO-1	Dimensional analysis	roughness parameter, Vorticity and Circulation	criterion for settling regime	Characteristic curves of centrifugal pump, comparison of devices for moving fluids	Constructional features and working principles of Rotameters				
3-1	SLO-2	Dimensional analysis derivation for pressure drop	Equivalent diameter, form friction losses in Bernoulli equation, couette flow.	Tutorial on Newton's law for settling	Tutorial on pumps	Derivation for flow measurement				
S-8	SLO-1	Boundarylayer	Hagen-Poiseuille equation	Fluidization	Constructional features of reciprocating pump	Tutorial on flow measurement				
3-0	SLO-2	Boundary layer formation in flat plate	Hydraulically smooth pipe, von Karman equation	Types of fluidization	working principle of reciprocating pump	Tutorial on flow measurement				
• •	SLO-1	Manometer, types of manometers	Tutorial on Hagen-Poiseuille equation	Conditions for fluidization,	Tutorial on pumps	Target meter, turbine meter				
S-9	SLO-2	Tutorial on Manometer	Tutorial on Hagen-Poiseuille equation	Minimum fluidization velocity	Constructional features and working principle of jet ejectors	Vortex shedding meter, Magnetic flow meter				
Learning Resources       1. McCabe, W.L., Smith, J.C., Harriot, P., Unit Operations in Chemical Engineering, 7 th ed., McGraw-Hill, 32       8adger W.L. and Banchero J.T., Introduction to Chemical Engineering, Tata McGraw Hill, 1997         2005       2. Noel de Nevers, Fluid Mechanical for chemical Engineers, 2 nd ed., McGraw Hill International Editions, 1991       3. Badger W.L. and Banchero J.T., Introduction to Chemical Engineering, Tata McGraw Hill, 1997										

Learning Ass	arning Assessment											
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Einal Examination	n (50% weightage)	
		CLA – 1	1 (10%)	CLA – 2 (15%)		CLA – 3 (15%)		CLA – 4	(10%)#		i (50% weightage)	
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	40 %		30 %		30 %		30 %		30%		
Lever	Understand	40 %	-	30 //	-	30 %	-	30 %	-	30%	-	
Level 2	Apply	40 %		40 %		40 %		40 %		40%		
Level 2	Analyze	40 /0	-	40 70	-	40 /0	-	40 70	-	4070	-	
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%		
Level 5	Create	20 /0	-	30 %	-	30 %	-	30 %	-	30%	-	
Total 100 %				100	) %	10	0 %	100	)%	100 %		

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd.,	1. Dr. Lima Rose Miranda, Anna University, limamiranda2007@gmail.com	1. Dr. K. Anbalagan SRMIST
2. Mr. S. T. Kalaimani, CPCL, Chennai	<ol> <li>Dr. T. R. Sundararaman, Rajalakshmi Engineering College, sundararaman.tr@rajalakshmi.edu.in</li> </ol>	2. Dr. S. Vishali, SRMIST

Course	18CHC206T	Course	MECHANIC	MECHANICAL OPERATIONS		С	Professional Core	L	Т	Ρ	С	
Code	1001102001	Name			Ca	itegory			3	0	0	3
-	1											
Pre-requis	ite _{Nii}		Co-requisite			Progre	ssive	Nil				
Courses	<b>i</b>		Courses			Cour	ses	1411				
Course Offe	ring Department	Chemic	al Engineering	Data Book / Codes/Sta	indards	Nil						

fering Department	Chemical Engineering

a Book / Codes/Standards	Nil
--------------------------	-----

Course L	urse Learning Rationale (CLR): The purpose of learning this course is to:				ing	Program Learning Outcomes (PLO)															
CLR-1 :	Illustrate the process of Ch	aracterizing, handling and storage of solids, and Screening concepts	1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2 :	Explain the principle of size reduction and size enlargement of solid particles												у								
CLR-3 :	Describe the methods of separations of particles through fluids				-					earch			Sustainability								
CLR-4 :	Elucidate the principles of filtration and working of various industrial filtration equipment				t (%)		dge		ent	Ū.			aina		Work		9				
CLR-5 :	5: Evaluation the concept of oritation and mixing, and various types of impollars, design of typings				nen		wle	s	elopment	, Re	Usage	Ð	sust		≤ E		Finance	rning			
CLR-6 :	CLR-6: Describe the concepts of size reduction and particle handling				Attainment		Knc	Analysis	velc	Design,	Us;	Culture	∞ŏ		Team	ion	δ Έ	arni			
			Thinking	d Proficiency			ing	Ana	, De	B	Tool	နှင	nent		~ð	licat	∕lgt.	) Le			
Course L	earning Outcomes (CLO):	At the end of this course, learners will be able to:	Level of .	Expected	Expected		Engineering Knowledge	Problem .	Design &	Analysis,	Modern ⁻	Society 8	Environment	Ethics	Individual	Communication	Project Mgt.	Life Long	PSO - 1	PSO - 2	PSO - 3
CLO-1 :	Characterize the particles s	ize analysis	2	85	70		-	Н	-	H	L	-	-	-	-	-	-	М	Н	-	-
CLO-2 :	Describe the size reduction machineries				80		Н	Н	-	М	-	-	-	-	-	-	-	-	Н	-	-
CLO-3 :					75		Н	Н	М	Н	-	-	М	-	-	-	-	-	Н	-	-
CLO-4 :	: Formulate the filtration concepts and design the equipment				75		Н	Н	Н	Н	-	-	М	-	-	-	-	-	Н	-	-
CLO-5 :	Apply the concepts of agitation and mixing in processes				70		Н	Н	М	Н	-	-	-	-	-	-	-	-	Н	-	-
CLO-6 :	: Understand particle separation based on size and their handling				70		Н	Н	М	Н	-	-	-	-	-	-	-	-	Н	-	-

Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	Characterization of solids: Particle shape and size	Purposes of size reduction	Motion of particles in fluid	Principles of Filtration	Introduction and purposes of mixing and agitation
3-1	SLO-2	Mixed Particle size measurement techniques	Principles of Comminution	Free settling and Hindered settling	Mechanism of filtration	Agitation equipment
S-2	SLO-1	Specific surface area of mixture, Average particle size	Power and Energy requirements in size reduction	Gravity settling processes, Classifier and Clarifier	Filter Medium and Filter aids	Impellers : Turbines
3-2	SLO-2	Tutorial on particle size	Crushing efficiency Drag forces and Lift forces, Drag coefficient Terminal settling velocity Crushing efficiency		Cake and Filter medium Resistances	Propellers and Paddles
S-3	SLO-1	Tutorial on particle size	Empirical relationships-Rittinger's law, Kick's law, Bond's law	Settling under Stoke's law regime	Principles of cake filtration - Pressure drop through filter cake	Standard turbine design
3-3	SLO-2	Tutorial on particle size	Tutorial on power required for size reduction	Newton's law regime	Compressible and incompressiblefilter cakes	Flow patterns inside the agitation vessel
S-4	SLO-1	Screen analysis: Differential and cumulative method	Tutorial on power required for size reduction	Tutorial on Stoke's law	Constant pressure Filtration	Prevention of swirling and vortex formation
5-4	SLO-2	Standard screen series	Tutorial on power required for size reduction	Tutorial on Stoke's law	Constant rate filtration	Draft tubes
S-5	SLO-1	Screening equipment - Stationary screens and Grizzlies	Classification of size reduction equipments Crushers: Jaw crushers-Blake jaw	Sorting Classifiers: Sink and Float method	Tutorial on filtration	Flow number
3-5	SLO-2	Gyrating screens, Vibrating screens	Gyratory crushers	Differential settling method and Equal settling	Tutorial on filtration	Calculation of power consumption in Newtonian liquids
	SLO-1	Ideal and actual screens	Grinders: hammer mills, Impactors	Batch Sedimentation	Tutorial on filtration	Dimensional analysis
S-6	SLO-2	Capacity and Screen effectiveness	Tumbling mills : Ball mill	Equipment for Sedimentation: thickeners	Tutorial on filtration	Power number correlation through Buckingham's π theorem

	1					
0.7	SLO-1	Tutorial on Screen effectiveness	Critical speed of Ball mill	Kynch theory of sedimentation	Filtration equipments	Power correlation
S-7	SLO-2	Tutorial on Screen effectiveness	Tutorial on Ball mill	Design of thickener	Pressure Filters-Batch Process-Plate and Frame Filter press	Significance of dimensionless groups
• •	SLO-1	Tutorial on Screen effectiveness	Ultrafine grinders - Fluid energy mills	Tutorial on sedimentation	Vacuum Filters	Tutorial on Power correlation
S-8	SLO-2	Tutorial on Screen effectiveness	Cutting machines: Knife cutters Tutorial on sedimentation		Continuous filters- Rotary Drum Vacuum filter	Tutorial on Power correlation
• •	SLO-1	Storage and transportation of solids	Size enlargement	Flocculation and Froth floatation	Centrifugal filters–Types of centrifuges	Blending of miscible liquids
S-9	SLO-2	Silos, Bins, Hoppers and conveyors	s, Hoppers and conveyors Open and Closed circuit operation Cyclone Separators, Centrifugal decanters		Working mechanism of Suspended batch centrifuge	Type of Mixers and its application
			., Unit Operations in Chemical Engineering, 7		L., Banchero J.T., Introduction to Chemical E	
Learn	ing	2005			I.M, Richardson. J.F, Backhurst J.R., Harkei	r. J.M, Coulson & Richardson's Chemical
Resou	urces	2. Foust, A. S., Wenzel, L.A., Clump, C.	W., Naus, L., Anderson, L.B., Principles of Ur	nit Operations, 2 nd ed., Engineerin	ng. Vol. II. 5 th ed., Butter worth Heinemann, O	xford, 2002

-ousi, A. S., Wenzei, L.A., John Wiley & Sons, 2008

Engineering, Vol. II, 5th ed., Butter worth Heinemann, Oxford, 2002
 Swain. A, Patra H, Roy. G K, Mechanical Operations, Tata McGraw Hill, 2010

	Bloom's			Conti	nuous Learning Ass	essment (50% weigh	ntage)			Final Examination	n (50% weightage)	
		CLA –	1 (10%)	CLA – 2 (15%)		CLA – S	3 (15%)	CLA – 4	(10%)#		i (50% weightage)	
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-	
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-	
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-	
	Total	10	0 %	10	0 %	100	) %	10	) %	100 %		

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd.,	1. Dr. Lima Rose Miranda, Anna University, limamiranda2007@gmail.com	1. Dr. K. Deepa, SRMIST
2. Mr. S. T. Kalaimani, CPCL, Chennai	2. Dr. T. R. Sundararaman, Rajalakshmi Engineering College, sundararaman.tr@rajalakshmi.edu.in	2. Mr. K. Selvam, SRMIST 3. Mrs. D. Nanditha, SRMIST

Course Code	18CHC207T	Course Name	HEAT T	RANSFER	Course Category	с	Professional Core	L 4	T 0	P 0	C 4
Pre-requis Courses	INII		Co-requisite Courses		Cour	ssive ses	Nil				
Course Offer	ring Department	Chemical Engineering		Data Book / Codes/Standards	Nil						

Course Learning Rationale (CLR): The purpose of learning this course is to:		earni	ng	Program Learning Outcomes (PLO)														
CLR-1: Utilize heat transfer modes, evaluate rate of heat transfer, analyze steady, unsteady state conduction, evaluate heat transfer coefficient			3		1	2	3	4	5	6	7	8	9	10	11	12	13	14 15
CLR-2: Explain and analyze the basic concepts of natural and forced convection as applied to various flows and geometry.											y							
CLR-3: Demonstrate the application of heat transfer principles in heat exchanger design	Ê							arch			ustainability							
CLR-4: Explain the principles of radiation heat transfer		<u> </u>	t (%)		dge		ent	see			aina		Work		8			
CLR-5: Describe the principles of evaporation and evaporator design	a (Bloc	ency	Attainment		wle	s	Development	Å,	Usage	Ð	Sust		eam V		Finance	ing		
CLR-6: Describe the different modes of heat transfer, concepts and applications.	king	Proficie	ainr		Kno	Analysis	velo	sign,	Usi	Culture	~ŏ		Теа	ion	δ Έ	ami		
	Thinkina	É P			ring	Ana	& De	B	Tool	နိုင	nent		8	licat	Mgt.	Le		
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected		Engineering Knowledge	Problem.	Design 8	Analysis,	Modern .	Society 8	Environment	Ethics	Individual &	Communication	Project N	Life Long	PSO - 1	PSO - 2 PSO - 3
CLO-1: Evaluate rate of heat transfer, analyze steady state and unsteady state conduction and evaluate heat transfer coefficient	2	80	75		Н	М	L	-	-	-	-	-	-	-	-	-	М	
CLO-2: Evaluate heat transfer coefficient of natural, forced convection as applied to various flows and geometry			75	ſ	Н	М	L	-	-	-	-	-	-	-	-	-	М	М -
CLO-3 : Design the heat exchangers		80	75		Н	Н	Н	L	-	-	-	-	-	-	-	-	М	M L
CLO-4 : Analyze the principles of radiation heat transfer	2	80	75		Н	М	L	-	-	-	-	-	-	-	-	-	М	
CLO-5: Design the evaporators		80	75		Н	Н	М	L	-	-	-	-	-	-	-	-	М	M L
CLO-6: Understand the concepts of heat transfer and the equipments		80	75		Н	М	L	-	-	-	-	-	-	-	-	-	М	

Durati	on (hour)	12	12	12	12	12
S-1	SLO-1	Introduction to various modes of heat transfer	Concept of heat transfer by convection. Natural and forced convection	Types of heat exchange equipments	Basic concepts of radiation	Introduction to Evaporation and its applications
3-1	SLO-2	Concept of resistance to heat transfer.	Forced convection in systems of simple geometries- Flow over a flat plate	Co-current and counter -current flow in heat exchangers - Temperature distribution	Emissive power, Black body	Single effect and multiple effect evaporation
S-2	SLO-1	Fourier's law of heat conduction	Thermal boundary layer, flow across a cylinder	Double pipe heat exchanger	Gray body, emissivity, radiation intensity	Types of evaporators
5-2	SLO-2	Effect of temperature on thermal conductivity	Mean temperature difference, LMTD	Shell and tube heat exchanger-single pass and multipass	Laws of radiation: Stefan-Boltzmann law, Planck's law, Wien's displacement law	Working principle of Long tube vertical evaporators: Falling film evaporators
	SLO-1	Steady state conduction of heat through a plane wall	Application of dimensional analysis for convection	Baffles and tube arrangements	Kirchhoff's law	Climbing film evaporators
S-3	SLO-2	Steady state conduction of heat through a hollow cylinder	Heat transfer correlations for natural Convection- Free convection from a flat surface, cylinder	multi -pass shell and tube heat exchanger, LMTD correction factor	View factor	Agitated film evaporators
S-4	SLO-1	Tutorial on conduction	Tutorial on LMTD	Fouling of a heat exchanger	Tutorial on Stefan-Boltzmann law	Evaporator capacity and economy
3-4	SLO-2	Tutorial on conduction	Tutorial on LMTD	Tutorial on heat exchangers	Tutorial on Stefan-Boltzmann law	Boiling point elevation, Duhring's rule
S-5	SLO-1		Heat transfer correlations for forced Convection	Process design considerations	Energy exchange between black bodies	Enthalpy balance equation for single effect evaporator
3-3	SLO-2	Steady state conduction of heat through coaxial cylinders	Forced convection in laminar and turbulent flow in circular pipes	in double pipe heat exchanger	Gray surfaces: Energy exchange between two large parallel planes	Tutorial on Enthalpy balance
S-6	SLO-1	Problem solving on composite layers	Overall heat transfer coefficient.	Tutorial on heat exchangers	Energy exchange between two large parallel planes of different emissivity	Tutorial on Enthalpy balance

	SLO-2	Problem solving on composite layers	Relationship between individual and overall heat transfer coefficients	Tutorial on heat exchangers	Energy exchange between a small object placed in a large enclosure	Tutorial on evaporators
S-7	SLO-1	Problem solving on composite layers	Problem solving on Overall heat transfer coefficient.	Enthalpy balance and heat duty calculation in shell and tube heat exchanger	Problem solving on energy exchange	Tutorial on evaporators
3-1	SLO-2	Steady state conduction in bodies with heat sources - The plane wall	Problem solving on Overall heat transfer coefficient.	Tutorial on heat exchangers design	Problem solving on energy exchange	Multiple effect evaporators: Methods of feeding
	SLO-1	Steady state conduction in bodies with heat sources - The cylinder	Momentum and heat transfer analogies	Tutorial on heat exchangers design	Problem solving on energy exchange	Comparison between the methods of feeding
S-8	SLO-2	Combined conductive and convective heat transfer and the concept of Heat Transfer Coefficient	Heat transfer to fluids with phase change- The Condensation Phenomenon	Tutorial on heat exchangers design	Problem solving on energy exchange	Effect of boiling point elevation in a multiple effect evaporator
	SLO-1	Heat transfer between fluids separated by a plane wall	Film wise and drop wise condensation	The effectiveness- NTU method of heat exchanger analysis	Radiation shield	capacity and economy of multiple effect evaporators
S-9	SLO-2	Heat transfer between fluids separated by a cylindrical wall	Heat transfer coefficientfor film wise condensation -condensation on vertical and horizontal cylinders	flow double pipe heat exchanger	Radiation intercepted by a shield placed between two large parallel planes	Enthalpy balance equation for multiple effect evaporator
S-10	SLO-1	Tutorial on Combined conductive and convective heat transfer	Tutorial on condensation	Expression for Effectiveness of counter current flow double pipe heat exchanger	Radiation intercepted by a shield in a cylindrical enclosure	Problem solving on evaporators effect
3-10	SLO-2	Tutorial on Combined conductive and convective heat transfer	Tutorial on condensation	Tutorial on heat exchangers design	Radiation intercepted by a shield in a spherical enclosure	Tutorial on multiple effect evaporators
S-11	SLO-1	Critical insulation thickness, applications	Effect of non-condensable gases	Tutorial on heat exchangers design	Tutorial on Radiation shield	Tutorial on multiple effect evaporators
3-11	SLO-2	Heat transfer from Extended surfaces – The Fins	The boiling phenomenon	Tutorial on heat exchangers design	Tutorial on Radiation shield	Tutorial on multiple effect evaporators
S-12	SLO-1	Unsteady state heat conduction - Introduction	The regimes of boiling in pool boiling	Tutorial on heat exchangers effectiveness	Tutorial on Radiation shield	Tutorial on multiple effect evaporators
3-12	SLO-2	Unsteady state heat conduction –Cartesian coordinates	Correlations for pool boiling heat transfer	Tutorial on heat exchangers effectiveness	Tutorial on Radiation shield	Evaporator selection

Learning 1. Holman J.P, Heat Transfer, 10th ed. Tata McGraw Hill, 2010

2. Binay K Dutta, Heat Transfer: Principles and Applications, PHI Learning Private Limited, 2010 Resources

3. Warren L. McCabe, Julian C. Smith, Peter Harriott, Unit Operations of Chemical Engineering, 7th ed., McGraw Hill Education, 2014

Learning Assess	ment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weigl	htage)			Einal Examination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA – 2	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#		r (50% weightage)
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	100	) %	100	)%	100	0 %	10	0 %	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd.,	1. Dr. Lima Rose Miranda, Anna University, limamiranda2007@gmail.com	1. Mr. V. Ganesh, SRMIST
2. Mr. S. T. Kalaimani, CPCL, Chennai	<ol> <li>Dr. T. R. Sundararaman, Rajalakshmi Engineering College, sundararaman.tr@rajalakshmi.edu.in</li> </ol>	2. Ms. E. Kavitha, SRMIST

Course Code	18CHC208T	Course Name	PRINCIPLE	ES OF MASS	S TRANSFER	Course Categor	, c	Professional	Core	L 3	T 0	P 0	C 3
Pre-requisi Courses	ite _{Nil}		Co-requisite Courses	Nil			gressive ourses	18CHC303T					
Course Offer	ing Department	Chemical Engineering			Data Book / Codes/Standards	Nil							

Course Le	earning Rationale (CLR):	The purpose of learning this course is to:	L	earni	ng					Progr	ram L	earni	ing O	utcon	nes (l	PLO)				
CLR-1 :	Explain the basic principles	of mass transfer, Diffusion phenomena and rate of mass transfer	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2 :	Illustrate various theories of	mass transfer, dimensionless numbers and rate of mass transfer across fluid interfaces										y								
CLR-3 :	Apply the principles of gas	absorption and design an ideal tray/packed absorption tower	Ê	(%	-				arch			abilit								
CLR-4 :	Demonstrate humidification	and dehumidification operations and design the cooling tower	(Bloom)		t (%)	dge		ent	Rese			Sustainability		Work		ge				
CLR-5 :	Explain the principles of dry	ing, different types of driers and drying time for different drying periods	g(B	ency	men	Me	s	mq	, Re	age	e	Sust		2		inance	ning			
CLR-6 :	Describe the basics of mas	s transfer and their concepts	Thinking	ofici	Attainment	Х ^р о	Analysis	Development	Design,	I Us	Culture	~ŏ		Team	tion	<u>8</u> Е	arni			
			- Lin	d P		ing	Ana	& De	De	[00]	နိုင်	onment		∞ŏ	municatio	∕lgt.	) Le			
Course Le	earning Outcomes (CLO):	At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering Knowledge	Problem	Design 8	Analysis,	Modern Tool Usage	Society 8	Environr	Ethics	Individual	Commur	Project Mgt.	Life Long	PSO - 1	PSO - 2	PSO - 3
CLO-1 :	Gain basic knowledge of m	ass transfer principles, and solve diffusion problems for fluids	2	80	75	Н	Н	-	-	-	-	-	-	-	-	-	-	М	-	-
CLO-2 :	Determine mass transfer co	efficients and identify rate controlling mechanism	2	80	75	Н	Н	М	L	-	-	-	-	-	-	-	-	М	М	-
CLO-3 :	Design the absorption colur	nn and analyze the performance of packed and plate columns	3	80	75	Н	Н	М	М	-	-	-	-	-	-	-	-	М	М	-
		humidification problems and design cooling towers	3	80	75	Н	Н	М	L	-	-	-	-	-	-	-	-	М	М	-
CLO-5 :	Gain knowledge on the bas	ic principles of drying, selection of driers and calculate drying time	2	80	75	Н	Н	М	М	-	-	-	-	-	-	-	-	М	М	-
CLO-6 :	Understand the fundamenta	als of mass transfer and the equipments																		

Durati	ion (hour)	9	9	9	9	9
S-1	SLO-1	Introduction to Mass Transfer operations	Introduction to Mass transfer coefficients	Introduction to Gas absorption	Introduction to humidification	Introduction, Importance of drying in processes
5-1	SLO-2	Diffusion and its types, Fick's I law of Diffusion	Types of mass transfer coefficients	Packing Characteristics	Humidity, dry bulb temperature, saturated gas, saturation humidity	principles of drying, wet Basis and dry basis calculations
S-2	SLO-1	Steady state molecular diffusion in fluids at rest and in laminar flow	Relationship between mass transfer coefficients	Types of tower packings	Relative humidity, percentage humidity, humid volume	Free moisture, equilibrium moisture, bound and unbound moisture
3-2	SLO-2	Molecular diffusion in gases: steady state diffusion of A through non diffusing B	Dimensionless groups in mass transfer	Characteristics of solvent	Humid heat, total enthalpy, dew point	Mechanism of drying
S-3	SLO-1	Tutorial on diffusion	Simultaneous momentum, heat and mass transfer	Contact between liquid and gas	Concept of adiabatic saturation	Constant and falling rate period
3-3	SLO-2	Gas phase equimolal counter diffusion. Diffusion in Multicomponent gas mixtures	Theories of mass transfer: film theory	pressure drop and limiting flow rates	Adiabatic saturation temperature	Rate of drying curve, critical moisture content
S-4	SLO-1	Tutorial on diffusion	Penetration theory	Material balances	Wet-bulb temperature, theory of wet-bulb temperature	Calculate drying time under constant drying conditions: constant rate period
3-4	SLO-2	Tutorial on diffusion	surface-renewal Theory	limiting gas-liquid ratio	psychrometric line and Lewis relation	Calculate drying time: falling rate period Total drying time
S-5	SLO-1	Molecular diffusion in liquids: steady state diffusion of A through non diffusing B	Interphase Mass Transfer	Rate of absorption	Humidity chart, use of humidity chart	Tutorial on constant and falling rate period
0-0	SLO-2	Tutorial on diffusion	Equilibrium between phases	calculation of tower height	Tutorial on humidification	Tutorial on drying
	SLO-1	Tutorial on diffusion	Concentration profile in Interphase mass transfer	number of transfer units, height of transfer unit	Tutorial on humidification	Tutorial on drying
S-6	SLO-2	Liquid phase equimolal counter diffusion	Two film theory	alternate forms of transfer coefficients	Tutorial on humidification	Classification of dryers, solids handling in dryers
S-7	SLO-1	Tutorial on counter diffusion	Mass transfer using Film Mass transfer Coefficients and Interphase concentrations	Tutorial on absorption	Types of Cooling towers	equipment's for batch and continuous drying processes

	SLO-2	Tutorial on counter diffusion	Overall Mass transfer Coefficients and Driving Forces		Working principle of cooling towers	Working principle of tray drier
S-8	SLO-1	Pseudo – steady state Diffusion.	Relation between individual and overall mass transfer coefficient	Absorption in plate columns: Determination of number of plates, Tray efficiencies	Design of a cooling tower	Working principle of rotary drier
3-0	SLO-2	Tutorial on counter diffusion	Tutorial on mass transfer coefficient	Height equivalent to a theoretical plate (HETP)	NTU, HTU concept	Working principle of spray drier
S-9	SLO-1	Effect of temperature and pressure on diffusivity	Experimental determination of mass transfer coefficients	Tutorial on HETP	Tutorial on design of a cooling tower	Working principle of fluidized bed drier
3-9	SLO-2	Tutorial on diffusivity	THIODALOD MASS ITADSIEF COEIIICIEDI	Introduction to absorption with chemical reaction	Tutorial on design of a cooling tower	Concept of freeze drying
Learni Resou	•		erations, 3 rd ed., McGraw Hill Education, 2013 Peter Harriott, Unit Operations of Chemical Er	ngineering, 4 th ed., Pearson India Ed	is, Transport Processes and Separation Proc ducation Services Pvt. Ltd., 2015 as of Mass transfer and Separation Processe	

	Bloom's			Cont	inuous Learning Ass	essment (50% weig	htage)			Final Examination	n (EOO/ waightaga)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	4 (10%)#		n (50% weightage)
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	10	0 %	10	0%	10	0 %	10	0 %	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd.,	1. Dr. Lima Rose Miranda, Anna University, limamiranda2007@gmail.com	1. Mrs. E. Poonguzhali, SRMIST
2. Mr. S. T. Kalaimani, CPCL, Chennai	<ol> <li>Dr. T. R. Sundararaman, Rajalakshmi Engineering College, sundararaman.tr@rajalakshmi.edu.in</li> </ol>	2. Ms. E. Kavitha, SRMIST

Course Code	18	SUHUZUMI	Course Name	CHEMICA	L ENGINEERING LAB -	I		ours itego		С					Profe	ssion	nal Co	ore					L 0	T 0	P 4	C 2
Pre-requ Cours	es	18CH206T, 18CH0		Co-requisite Courses	Nil	/ Codes/Standa</th <th></th> <th></th> <th>ogres Cours</th> <th></th> <th>Nil</th> <th></th>			ogres Cours		Nil															
Course Of	tering L	epartment	Chemical Engineerin	g	Data Book	(/ Codes/Standa	iras	IN//			-															
Course Le	arning	Rationale (CLR):	The purpose of learni	ng this course is to:					earn	ing					Ρ	rogra	am L	earni	ing O	utcor	nes (	PLO)				
CLR-1 :	screenir	ng equipments			on techniques using Crus	shing, grinding and	d	1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
			on techniques and desi					(mo	(%)	(%)		ge		ŧ						¥		Ð				
			paration techniques an iids and Frictional loss o		ener			L evel of Thinkina (Bloom)	Expected Proficiency (%)	S Expected Attainment (%)		Engineering Knowledge	~	Design & Development		ge				Individual & Team Work		Project Mgt. & Finance	g			
			n devices and design th					kina	oficie	ainm		Kno	Problem Analysis	velo	Analysis, ⊔esign, Research	Aodern Tool Usage	Society & Culture	~		Tear	ion	& Fir	ife Long Learning			
			of mechanical operatio		hanics.			Thin	d P	d Att		ring	Ana	s De	h ne	Tool	с s	nent ability		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	nicat	Mgt.	g Le			
							ı	el of	ecte	ecte		inee	olem	ign .	earc	lern	iety	Environment & Sustainability	S	vidu	Communication	ect	Lon	- 02c	PSO - 2	PSO - 3
			At the end of this cou	rse, learners will be	e able to:			_	ш	EX ·				Des	Ana Res	о М	Soc	Env Sus	Ethics		Con	Proj	Life	PSC	PSC	PSC
		the size reduction i						1	80			М	L							Н						
			nd understand the desig		t the language in decise	a the equipments		2	80 90			H H	M M	M M	M					L			Н			
			d separation techniques design of piping system		t the knowledge in desigr	n the equipments		3				M	M	M L	M					L			H H			
			nowledge to design of					2				L	L	L	IVI		_			L			H			
			eduction techniques and					1	80	75		M	L	_						H						
Duration	(hour)		12		12		12						1	12					1	1		12	2	1	1	
S 1-4	SLO-1 SLO-2		e Particle Size using thod		of given cut diameter sing Screen Effectiveness	Find size reduction material Using Ja		e give	n Solid	d	Calcul substa critical	nce u	ing B	all Mill						sedim		f partio ion set				
S 5-8		Find the particle si efficiency using Cy	clone separator	plate and frame filte		Conveyor	eyance effici	ency o	of Scre	9W	Calcul Vacuu			d Medi	um res	istan	ce us	Ŭ	maten	ial usi	ng Dro	iction i op We	ight C	rushe	-	
s	SLO-1	Meter and Venturi		open flow channel	e coefficient on V-Notch in	Verify relationship					Vorify	herfor	nance	Chara	octorist	ics of	num	nc	packe	d bed		re drop			0	
9-12	SLO-2	Find the discharge Meter	coefficient using Rota	Calculate pressure contraction, Expans	loss coefficient of sion and fittings on pipe	and friction factor	r using pipe i	frictio	test F	Rig.	vonny	Jonon	nanoo	onare	lotonot	100 01	pun		Calcui throug			m fluia bed	lizatio	n velo	city of	flow
Learning Resources	<b>s</b> 1	. McCabe, W.L., S	mith, J.C., and Harriot,	P., Unit Operations	in Chemical Engineering	g, 7 th ed., McGraw	/-Hill, 2005.																			
Learning /	Assessr	nent																								
		Bloom's				Learning Assessr	1		<u> </u>			1								Final	Exam	ninatio	n (50	% we	iahtaa	le)
		Level of Thinking	CLA – 1 Theory	10%) Practice	CLA – 2 (15%	1		.A – 3	(15%				The		- 4 (1								<b>(</b>		• •	- /
Level 1		Remember Understand		40 %	Theory -	Practice 30 %	Theory -			Practio 30 %		-	The	ory			ractio 30 %				heory -			-	ctice )%	
Level 2		Apply Analyze		40 %	-	40 %	-			40 %	0		-				40 %	ó			-		1	4	)%	
Level 3		Evaluate		20 %	-	30 %	-			30 %	/ 0		-				30 %	ć			-			30	)%	
		Total	100 9	%	100 %			100	%			1			100 %	, 0						10	00 %			
		rom any combination	on of these: Assignmen	ts, Seminars, Tech	Talks, Mini-Projects, Cas	se-Studies, Self-S	Study, MOO	Cs, C	ertific	ations	, Conf	Pape	er etc.	,												
Course De										-	-															
Experts from			Facility and stated Oals "	D.4.144		Experts from Hig						1-00	170						ernal E				<del>.</del>			
			Environmental Solutions	PVI. LIØ.,		1. Dr. Lima Rose 2. Dr. T. R. Sund								nail.co	m							RMIST				
2. Mr. S. T.	Kalaimai	ni, CPCL, Chennai				sundararaman.tr				Liigiill	Jonny	Joney	ς,					2.	Mrs. I	D. Nai	nditha	, SRM	IIST			



Cou Coo		18CEC201T	Course Name		ENGI	NEERING GEOLOGY			ourse	1	С				Pro	fessio	onal C	ore					L 3	T 1	P 0	C 4
Co	equisite ourses e Offering	<i>Nil</i> g Department	Civil Engi	ineering	Co-requisite Courses	Nil Data Book	/ Codes/Standards			gress ourse		lil														
CLR-1 CLR-2	: Identi : Analy	ng Rationale (CLI ify the various geo vze the Minerals o	ological process of Earth crust	ses	ng this course is to:				L.	earnir 2	ig 3	1	2	3	4	Prog	ram L 6	earnir 7 ⋧	<b>ig O</b> u 8		<b>nes (F</b> 10	,	12	13	14	15
CLR-4	: Interp : Utilize	ize about the Roc pret the various ge e the geological ir ify Geological con	eological structu nvestigations Te	ires chniques	ring projects				-evel of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability		Individual & Team Work	Communication	Project Mgt. & Finance	ig Learning			
CLO-1 CLO-2 CLO-3 CLO-4	: Identi : Identi : Class : Interp	ify the geological ify the physical pr sify, Structure, Ide pret the various ge	agencies and th operty of rock fo entify texture and eological structu	neir actions forming miner d the distribu	rse, learners will be rals tion of various type				2 2 2 2 2 2	85 85 80 85	80 75 75 80	H H H	Problem	- - -	-	· · · Modern		M M H H	- Ethics	L L L	- Commu	· · · Project	H H H H Life Long I	H H H H H	PSO-2	PSO - 3
		ze the investigati ze the primary m		l Engineering	n projects	12	12		3	85 80	75 75	H H	- H	Н Н 12	M H	-	-	H H	-	M M	-	- - 12	H H	H H	-	-
S-1	SLO-1	Applications of G Engineering			Physical properties	s of minerals and its	Rocks of the earth cru	_			Di: Ro	scontinu ock	ities in		ck &S	Struct	ure of	une re	opogi ading	raphy g of T	/ and Toposi	neerii types heet	ng Pro	nd forr	ns,	
	SLO-2	Internal structure	e of Earth		and its role in Alka		Types of rocks and kir materials	nds of	buildir	ng		ontour ar termine								gical r uction		ing m	ethod	s of a		
S-2	SLO-1	Endogenous pro Tectonics	,	ke & Plate	quartz analysis -c	otical properties- strained ement bonding effects	Igneous Rocks- Types alteration process	s, com	positic	n,	Att	titude of	rocks-	DIP 8	Strik	æ			eolog pogra			ing of	^r subs	urface	)	
0-2	SLO-2	Physical weathe demerits of weat area	ring-process, m thering zones in	project	minerals and optic	s of Feldspar group al properties. Chemical rs and formation of clay	Igneous Rocks- struct	ure, ve	eins, c	aves,	Ge	eological	Struc	tures –	Fold	ls			eoph iethoù		al Inve	stiga	tions -	-Self µ	ooten	tial
SLO-1 Chemical and biological Weathering process, merits and demerits of weathering zones in project area Mica group of minerals, types and deleterious minerals Biotite gradients of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon						Engineering Propertie rocks – Granite, Diorit Biotite granite, felsic g	e, dole ranite	erite, E	lasalt,		ld Class	ificatio	n							al Inve al droj		tions - hod	-equip	ooten	tial	
S-3	SLO-2 Products of weathering, Weathering grade minerals, Identification of minerals Quartz analysis- with strength of the rocks minerals-strained quartz analysis –cement bonding effects						Igneous rocks – comp response to rock stren properties of Igneous rock and aggregates	igth Ei	nginee	ring	inv	ld signifi vestigatio orientati	ons, Fo	old axi			minat						ding s ırface			
S-4	SLO-1 SLO-2	Tutorial			Tutorial		Tutorial				Tu	itorial						-	utoria					_		
	SLO-1	Groundwater- or types, water tabl			Pyroxene group of	f Minerals	Sedimentary Rocks- 7					eological	Struc	tures –	Faul	lt					ology al tec		ubsur es	face r	парр	ing
S-5	types, water table, Groundwater quality					Conglomerate, breccia composition, quality an signatures					ult Clas	sificatio	on						e Ser ering		Tech	nique	s for c	ivil		

	SLO-1	Exploration method of Groundwater-		Limestone, types, composition, properties,	Fault Classification	Applications of satellite mapping methods
	010-1	Electrical resistivity survey technique		solution reactivity and cave formation		reproductions of saterine mapping methods
S-6	SLO-2	Geomorphic landforms performed at- Desert, lands (wind) merits and demerits for civil engineering, projects		Clay minerals types formation and Engineering properties	Geological Structures – Joints	Geological Considerations for Dam
S-7	SLO-1	Geomorphic landforms performed by sea erosion, merits and demerits for civil engineering. projects	Physical Properties of Calcite	Engineering Properties of the Sedimentary rocks-, Breccia and Conglomerate, sandstone and limestone	Joint Classification	Geological Considerations for Dam
-	SLO-2	Geomorphic landforms performed at ice covered lands merits and demerits for civil engineering. projects	Physical Properties of Gypsum,mica	Metamorphic Rock types, description of gneiss, quartzite, marble, slate, schist, phyllite	Joint Classification	Geological Considerations for Dam
	SLO-1 SLO-2	Tutorial	Tutorial	Tutorial	Tutorial	Tutorial
S-9	SLO-1	Geomorphic landforms performed at River Erosion its merits and demerits for civil engineering. projects	I Jav minerals and types	Metamorphic rocks Textures and structures,	Engineering Considerations of Fold	Geological Considerations for Reservoirs
	SLO-2	Landforms performed at River deposition, its merits and demerits for civil engineering. projects	Ciav Diodenies as innino and inier malenais	Engineering properties of metamorphic rocks	Engineering Considerations of Fold	Geological Considerations for Reservoirs
S-10 -	SLO-1	Coastal erosional and depositional land forms		Preparation of Fence diagram and delineation of subsurface rock layers	Engineering Considerations of Fault	Geological Considerations for hard and soft Tunnels
	SLO-2	Sea water dynamics and Coastal protection structures	Coal deposits and mines in India	Litho core/Borehole rock analysis	Engineering Considerations of Fault	Geological Considerations for Tunnels and Road Cuts
S-11	SLO-1	Landslides, causes for landslides, factors.	Coal properties	Rock litho core analysis,	Engineering Considerations of Joint	Demonstration of Clinometer, Brunton, GPS, GPR
-	SLO-2	Types of landslides, landslide mitigation structures	Petroleum deposits of India	Determination of rock strength	Engineering Considerations of Joint	Identification of maps, type of soils,
	SLO-1 SLO-2	Tutorial	Tutorial	Tutorial	Tutorial	Tutorial

 Maruthesha Reddy M.T. Engineering Geology Practical, New Age International Pvt Ltd, 2003
 Legeet, Geology and Engineering, McGraw Hill Book Company, 1998 Resources

7. NPTEL: Subsurface exploration :importance and techniques. https://onlinecourses.nptel.ac.in/noc19_ce10/preview

Learning Asse	essment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Einal Examination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	4 (10%)#		i (50% weigi itage)
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Lovel 1	Remember	40 %		30 %		30 %		30 %		30%	
	Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply	40 %		40 %		40 %		40 %		40%	
Level 2	Analyze	40 /0	-	40 /0	-	40 /0	-	40 %	-	4070	-
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%	
Level 3	Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	10	0 %	10	0 %	10	0 %	10	0 %	10	0 %

Course Designers			
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts	
1. Dr. Sarunjith K J, National Centre for Sustainable Coastal Management, sarunjith@ncscm.res.in	Dr. R. Nagendra, Anna University, geonag@gmail.com	Dr. R Annadurai, SRMIST	Dr. Sachikanta Nanda, SRMIST
2. Dr. Nagasundaram M, Geological Survey of India, nagasundaram.m@gsi.gov.in	Dr. S. G. D. Shreedhar, University of Madras, sgd.sri@unom.ac.in	Dr. Aparna S Bhaskar, SRN	list

Course Code	18CEC202T	Course Name	FL	UID MECHANICS	Course Category	С		Professional Core	L	T	P	C
Code		Name			Galegoly				2	1	U	3
Pre-requisi			Co-requisite	18CEC202L	Progre	ssive	18CEC206T					
Courses	NII		Courses	100E0202L	Cour	ses	10CEC2001					
Course Offer	ring Department	Civil Engineering		Data Book / Codes/Standards	Nil							

Course Le	earning Rationale (CLR):	The purpose of learning this course is to:	L	earni	ng					Prog	ram L	earni	ing O	utcor	nes (	PLO)				
CLR-1 :	Utilize the various propertie	s of fluids	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2 :	Analyze hydrostatics, buoya	ancy; stability of floating and submerged bodies										~								
CLR-3 :	Utilize pressure measuring	devices	) (m		-				arch			Sustainability								
CLR-4 :	Analyze concepts of fluid ki	nematics	loor	y (%)	it (%)	dge		ent	Sei			aina		Work		ge				
CLR-5 :	Apply fluid dynamics for pra	ctical applications	- Blo	ency	nen	wle	s	elopment	ı, Re	Usage	е	Sust		am V		Finance	ning			
CLR-6 :	Utilize the concepts of flow	through pipes in real time applications	Thinking	Proficie	Attainment	хр	Analysis	evelo	Design,	۱Us	Culture	∞ŏ		Теа	tion	∞ŏ	arni			
			Thir	dPr	dAt	ing	Aná	& De	Ē	Tool	& Cl	neni		8	nicat	Mgt.	g Le			
Course Le	earning Outcomes (CLO):	At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering Knowledge	Problem .	Design 8	Analysis,	Modern ⁻	Society &	Environment	Ethics	Individual	Communication	Project N	Life Long	PSO - 1	PSO - 2	PSO - 3
CLO-1 :	Identify the various properti	es of fluid	2	85	80	Ħ	Ħ	-	-	-	-	-	-	-	-	-	-	Ħ	-	-
CLO-2 :	Analyze hydrostatic pressu	re force	3	85	75	Н	Н	-	-	-	-	-	-	-	-	-	-	Н	-	-
CLO-3 :	Apply hydrostatic laws in va	rious pressure measuring devices	3	85	75	Н	Н	-	-	-	-	-	-	-	-	-	-	Н	-	-
CLO-4 :	Identify the importance of fl	uid kinematics	2	85	80	Н	Н	-	М	-	ł	-	-	-	1	-	-	Н	-	-
CLO-5 :	Identify the applications of f	luid dynamics	2	80	75	Н	Н	-	М	-	-	-	-	-	-	-	-	Н	-	-
CLO-6 :	Analyze laminar and turbule	nt flow in pipes	3	85	75	Н	Н	-	М	-	-	-	-	-	-	-	-	Н	-	-

Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	Fluid properties Importance, application of fluid mechanics	U tube differential manometer, upright and inverted differential manometer	Stream line, path line, streak line and stream tube	Momentum equation	Pipes in series and parallel
3-1	SLO-2	Distinction between fluid and solid, mass density, specific weight, specific gravity	Mechanical gauges	Velocity potential function	Force exerted by a flowing fluid on a pipe bend	Equivalent pipes
S-2	510-1	Newton's law of viscosity, kinematic and dynamic viscosity	Fluid statics: Hydrostatic pressure force: horizontal and vertical surfaces	Stream function	Free liquid jets, Maximum height attained by the jet	Flow through syphon
5-2	SLO-2	Variation of viscosity with temperature and pressure	Hydrostatic pressure force: inclined surfaces	Flow net	Time of flight, time to reach highest point, horizontal range of the jet	Branching of pipes
S-3	SLO-1	Solving problems using tutorial sheet 1	Solving problems using tutorial sheet 4	Solving problems using tutorial sheet 7	Solving problems using tutorial sheet 10	Solving problems using tutorial sheet 13
0.0	SLO-2	Solving problems using tutorial sheet 1	Solving problems using tutorial sheet 4	Solving problems using tutorial sheet 7	Solving problems using tutorial sheet 10	Solving problems using tutorial sheet 13
S-4	SLO-1	Surface tension on liquid droplet, hollow bubble and liquid jet	Hydrostatic pressure force on curved surfaces	Control volume, continuity equation in cartesian coordinate system	Flow through pipes	Two reservoir problem
3-4	SLO-2	Capillarity	Buoyancy, center of buoyancy	Forced vortex flow and free vortex flow	Laminar flow in circular pipes, Hagen– Poiseuille equation	Three reservoir problem
	SLO-1	Bulk modulus of elasticity, compressibility	Metacenter and metacentric height	Fluid dynamics	Turbulent flow in pipes, Velocity distribution for turbulent flow	Water hammer in pipes
S-5	SLO-2	Vapour pressure, boiling point and cavitation	Stability of floating and submerged bodies	Euler's equation and Bernoulli's equation	Reynolds experiment, frictional loss in pipe flow, Darcy Weisbach equation, minor energy losses	Power transmission through pipe
S-6	SLO-1	Solving problems using tutorial sheet 2	Solving problems using tutorial sheet 5	Solving problems using tutorial sheet 8	Solving problems using tutorial sheet 11	Solving problems using tutorial sheet 14
3-0	SLO-2	Solving problems using tutorial sheet 2	Solving problems using tutorial sheet 5	Solving problems using tutorial sheet 8	Solving problems using tutorial sheet 11	Solving problems using tutorial sheet 14

S-7	SLO-1	Fluid pressure at a point, Pascal's law	Fluid kinematics	Practical applications of Bernoulli's equation, venturimeter	Loss due to sudden enlargement and contraction	Condition for maximum power transmission
5-1	SLO-2	Pressure variation in a fluid at rest; absolute and gauge pressures	Classification of fluid flow	Horizontal, vertical and inclined venturimeters	Loss of head at the entrance and exit of the pipe	Boundary layer theory Boundary layer definitions, characteristics
S-8	SLO-1	Piezometer, U-tube manometer	Velocity and acceleration	Orificemeter	Loss of head due to an obstruction in a pipe	Boundary layer thickness and displacement thickness
5-0	SLO-2	Single column manometer	Local acceleration and convective acceleration	Pitot tube	Hydraulic Gradient Line (HGL) and Total Energy Line (TEL)	Momentum thickness and energy thickness
S-9	SLO-1	Solving problems using tutorial sheet 3	Solving problems using tutorial sheet 6	Solving problems using tutorial sheet 9	Solving problems using tutorial sheet 12	Solving problems using tutorial sheet 15
3-9	SLO-2	Solving problems using tutorial sheet 3	Solving problems using tutorial sheet 6	Solving problems using tutorial sheet 9	Solving problems using tutorial sheet 12	Solving problems using tutorial sheet 15
Learn Resou	•		d Fluid Machines, Standard book house, 2005 tion of fluid mechanics, Tata McGraw Hill, 200	4. Bansal R.K., Fluid Mec	hanics and Hydraulic Machines, S.Chand, 20 hanics and Hydraulic Machines, Laxmi Public luction to Fluid Mechanics https://onlinecoursi	cation, 2017

1	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examination	(E00/ woightage)
	Level of Thinking	CLA –	1 (10%)	CLA – 2	2 (15%)	CLA –	3 (15%)	CLA – 4	4 (10%)#		i (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	40 %		30 %		30 %		30 %		30%	
Level	Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply	40 %		40 %		40 %		40 %		40%	
Leverz	Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%	
Level 5	Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	10	0 %	100	)%	10	0%	10	0 %	100	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Abdul Hakeem, National Remote Sensing Center, Hyderabad, abdulhakeem_k@nrsc.gov.in	1. Dr. R. Saravanan, Anna University, rsaran@annauniv.edu	1. Dr. R. Sathyanathan, SRMIST
2. Dr. Sat Kumar Tomer, Satyukt Analytics Pvt Ltd., Bengaluru, sat@satyukt.com	2. Dr. S. Saravanan, NIT Trichy, saravanans@nitt.edu	2. Dr. Deeptha Thattai, SRMIST

Course Code	18CEC202L	Cours Nam		FLUID ME	CHANICS LABOR	RATORY		-	ourse tegory	,	С					Pro	fessio	onal (	Core					L 0	T 0	P 2	C 1
Pre-requisite Courses	Nil			Co-requisite Courses	18CEC202T					gress ourse		Nil															
Course Offering	g Department	Civ	ril Engineering		Dat	a Book / Co	des/Standards		Nil																		
Course Learning	a Rationale (CL	R). The	numose of learn	ing this course is to:					14	arni	na	1					Prog	ram	earn	ing O	utco	nes (l	21 O)				
	<b>.</b> .		or real-time applic						1	2	3	-	1	2	3	4	5	6		8		10		12	13	1/	15
CLR-2: Utilize				allons					- (u			1		2	-	4	5	0	1	0		10		12	15	14	15
CLR-3 : Analy									loor	37 (%	nt (%		adge		lent		_				Work		g				
			ter, venturimeter	and pitot tube					lg (B	Sienc	mer		owle	.s	opm	ć	sage	e			ME V	_	linar	Learning			
	fy the losses in pi								inkir	rofic	ttair		ЧЧ	alys	evel	Design, 1	ñ	Cultu	t &		Te	ation	S.	earn			
CLR-6 : Utilize	e the functions of	orifice ar	nd mouthpiece						f Th	ed Р	ed A		erinç	n Ar	& D	c, D	Ĩ	~»	Inder	5	al 8	unice	Mgt	ng L	-	2	e
<u> </u>		<b>a</b> ) 14							evel of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)		H Engineering Knowledge	Problem Analysis	Design & Development	Analysis, E Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team	Communication	Project Mgt. & Finance	-ife Long I	- OS4	- OS4	PSO - 0
				ırse, learners will be	able to:						<u>й</u> 85	4	ш	Б М	De	A B	ž	S	ыß	苗	<u>Е</u> Н	රි	Ę	Life	В Н	S.	н Н
CLO-1 : Apply CLO-2 : Identit									3	90 85	80	-	н	M		-	-	-	-	-	н	-	-	-	н	-	н
CLO-2: Identii									3	90	85	1	H	M	-	-	-	-	-	-	H	-	-	-	H	-	H
				nctions of orificemet	er. venturimeter a	and pitot tube	)		3	85	80	1	H	M	-	-	-	-	-	-	H	-	-	-	H	-	H
CLO-5 : Estima			The second second		,				3	85	80	1	Н	М	-	-	-	-	-	-	Н	-	-	-	Н	-	Н
CLO-6 : Identii	fy the working pri	inciple, ar	nd functions of ori	fice and mouthpiece					3	85	80		Н	М	-	-	-	-	-	-	Н	-	-	-	Н	-	Н
Duration (hour)		6			6			6							6								6				
	Determine press manometer	sure using	y U-tube	Verify Bernoulli's e	quation		ermine coefficie cemeter	nt of disc	charge	for		Deterr tube	nine c	oeffici	ient o	f velc	city fo	or pite		Deter enlarg			oeffic	ient fo	or sud	den	
3-4 SLO-2	Determine metao model		0 1	Determine coefficie venturimeter	ent of discharge fo	меа	asure flow using				I	materi								Deter					U		rifice
	Determine metao rectangular log	centric he	eight for a	Measure flow using	g venturimeter		ermine coefficie meter	nt of disc	charge	for		Deterr contra	nine lo ction	oss co	oeffici	ent fo	r sud	den		Deter moutl			cient d	of disc	charge	e of	
Learning Resources	2. Subramany			l Fluid Machines, Sta ion of fluid mechanic					Rajput. .abora												nd Co	mpan	y Ltd.	,2013	}		
Learning Asses	sment				Cant			+ /FO0/																			
	Bloom's		CLA-1	(10%)		2 (15%)	ning Assessmer		veignta A – 3 (						CL /	<b>\</b> − 4	10%	\#			Final	Exam	natio	n (50%	% wei	ghtag	je)
	Level of Think	king —	Theory	Practice	Theory	Practi	ice	Theory	<u> </u>		ractic	e	-	The		1 - 4		/ <del>//</del> Practi	ice		T	neory			Pra	ctice	-+
Level 1	Remember Understand		-	40 %	-	30 %		-			30 %			-				30 %				-			30	9%	
Level 2	Apply Analyze		-	40 %	-	40 %	6	-			40 %			-				40 %	%			-			40	9%	
Level 3	Evaluate Create		-	20 %	-	30 %	6	-			30 %			-				30 %	6			-			30	)%	
	Total		100			0 %	tudies Self-Stur		100 %							100	%						10	0 %			

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Abdul Hakeem, National Remote Sensing Center, Hyderabad, abdulhakeem_k@nrsc.gov.in	1. Dr. R. Saravanan, Anna University, rsaran@annauniv.edu	1. Dr. R. Sathyanathan, SRMIST
2. Dr. Sat Kumar Tomer, Satyukt Analytics Pvt Ltd., Bengaluru, sat@satyukt.com	2. Dr. S. Saravanan, NIT Trichy, saravanans@nitt.edu	2. Mr. Shaik Niyazuddin Guntakal, SRMIST

Course Code	18CEC203T	Course Name	MECHANI	ICS OF STRUCTURES	Course Category	С	Professional Core	L T P C 2 1 0 3
Pre-requisi Courses Course Offer	NII	Civil Engine	Co-requisite Courses	18CEC203L Data Book / Codes/Standards	Progre Cour <i>Nil</i>		Nil	

Course Learning Rationale (CLR): The purpose of learning this course is to:	L	.earni	ng					Prog	ram L	earn	ing O	utcor	nes (F	PLO)				
CLR-1: Utilize the concepts of stresses in compound sections and principal stresses and principal strains	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14 1	5
CLR-2: Analyze determinate beams for bending moment and shear force										y								
CLR-3: Utilize Computation of stresses in beam cross section	Ê						arch			stainability								
CLR-4: Utilize Computation of slope and deflection of beams and analysis of determinate and indeterminate trusses	(Bloom)	cy (%)	it (%)	edge		ent	ese			aine		Work		g				
CLR-5 : Analyze columns and application of theories of failures	g B	enc	nen	2	s	mdo	, R	age	Ð	Sust				Finance	g			
CLR-6: Utilize concepts of static indeterminacy and analysis of indeterminate beams	nking	ofici	Attainment	Кло	Analysis	evelopment	sign,	S	Culture	~		Team	tion	∞ŏ	arni			
	Thir	d Pr	ā	ing	Ana	& De	Ē	Tool	ھ ت	nment		~ŏ	lical	Mgt.	g Le			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering	Problem	Design 8	Analysis,	Modern .	Society 8	Environn	Ethics	Individual	Communicatior	Project N	Life Long	PSO - 1	PSO - 2	
CLO-1: Analyze the state of stress, evaluate principal stresses and principal strains including stresses in compound sections	3	80	75	Н	Н	-	-	-	-	-	-	-	-	-	-	Н	- F	Ī
CLO-2: Determine bending moment and shear force distribution along the beam	3	85	75	Η	Н	-	-	-	-	-	1	-	-	-	-	Н	- H	Γ
CLO-3: Determine bending and shear stress distribution across the cross section of rectangular, 'I', 'T' sections.	3	75	75	Н	Н	-	Н	-	-	-	-	-	-	-	-	Н	- F	Ē
CLO-4: Compute slope, deflection of beams (Macaulay's, conjugate beam method) analyze determinate, indeterminate trusses	3	90	80	Η	Η	-	-	-	-	-	-	-	-	-	-	Η	- H	1
<b>CLO-5</b> : Analyze columns using Euler's, Rankine's theories of columns, theories of failure in real time applications	3	85	75	Η	Η	-	-	-	-	-	-	-	-	-	-	Η	- H	1
CLO-6 : Apply Macaulay's method, Clapeyron's theorem to solve indeterminate beam problems	3	80	75	Η	H	-	-	-	-	-	-	-	-	-	-	Н	- H	1

Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	STRESSES IN COMPOUND SECTIONS Principles of composite sections	DETERMINATE BEAMS – BENDING AND SHEAR FORCE DIAGRAMS Determinate structures, Types of beams, load and its types.	DETERMINATE BEAMS – SLOPE AND DEFLECTION Definition of slope and deflection:	<b>COLUMNS</b> Classifications of columns, failure of column	INDETERMINATE BEAMS Introduction to static & kinematic indeterminacy
	SLO-2	Analysis of compound sections	Shear force and bending moments: definitions, sign conventions	Definition of elastic line, differential equation of flexure	Euler's column theory limitations, end conditions, effective length, slenderness ratio	Static and kinematic indeterminacy of two and three dimensional pin jointed structures
S-2	SLO-1	Thermal stresses and strains	BM diagrams plotted on tension side, SF diagrams, cantilever beams	Slope and deflections of determinate structures - Macaulay's method	Solving Problems	Static and kinematic Indeterminacy of two and three dimensional rigid jointed structures
	SLO-2	Simple and compound bars.	SF and BM Diagrams for simply supported beams	Solving Problems	Solving Problems	Analysis of indeterminate beams, propped cantilever beams - Macaulay's Method
S-3	SLO-1 SLO-2	Tutorials	Tutorials	Tutorials	Tutorials	Tutorials
S-4	SLO-1	STRESSES AT A POINT Introduction to principal stresses and strains	SF and BM Diagrams for over-hanging beams	Slope and deflections of determinate structures - Conjugate beam method.	Rankine's formula, factor of safety	Analysis of fixed beam by Macaulay's method
	SLO-2	Two dimensional stresses without shear stress	beams with internal hinges, point of contra flexure	Solving Problems	Column with eccentricity, core / kernel section.	Introduction to Clapeyron's theorem of three moments
	SLO-1	Two dimensional stressesLike and unlike stresses, with shear stress	Relationship between load, shear force and bending moment.	PIN JOINTED TRUSSES Analysis of determinate trusses.	THEORIES OF FAILURES Introduction to theories of failures	Analysis - Continuous beams
S-5		Introduction to three dimensional stresses	BENDING / SHEAR STRESSES: Pure bending, bending equation – Bending / Shear stress distribution		Application of maximum principal stress theory	Analysis of Continuous beams with settlement of supports
S-6	SLO-1 SLO-2	Tutorials	Tutorials	Tutorials	Tutorials	Tutorials

<b>S-</b> 7	SLO-1	,	Neutral axis, moment of resistance, section modulus	Indeterminate Trusses - En Analysis of indeterminate p Plane trusses of degree of i equal to 1	in jointed -	Application of maximum principal strain theory	Solving problems on two span continuous beam with simple supports
	SLO-2	Stresses in thin cylinder and spherical shells	Bending stresses, symmetrical sections.	Analysis of Trusses due to lack of fit		Application of stress difference theory	Solving problems on two span continuous beam end support (s) fixed
S-8	SLO-1	Concept of product of inertia, parallel axes theorem		Analysis of Trusses subject temperature effects.	ed to	Application of strain energy theory	Solving three span continuous beams with simple end supports and fixed end supports.
3-0	SLO-2	Principal moment of inertia		Concept of solving indeterminate trusses with degree of indeterminacy greater than one		Application of shear strain energy theory	Principle of forming deflection equation - Macaulay's method.
S-9	SLO-1 SLO-2	Tutorials	Tutorials	Tutorials		Tutorials	Tutorials
		1. Devdas Menon, Structural Analysis, 1	[#] ed., Narosa, 2013		5. Rajput.R. I	K, Strength of Materials: Mechanics of Solids	s,5 th ed., S. Chand Limited, 2010

	1.	Devdas Menon, Structural Analysis, 1 st ed., Narosa, 2013	5.	Rajput.R. K, Strength of Materials: Mechanics of Solids,5th ed., S. Chand Limited, 2010
Learning	2.	R.C.Hibbeler,Structural Analysis, 9 th ed., Pearson India, 2017	6.	Punmia.B.C, Ashok.K.Jain, Arun.K.Jain, Theory of Structures, 12th ed., Laxmi Publicaitions, 2014
Resources	З.	R.C.Hibbeler, Mechanics of Materials, 9 th ed.,Pearson India, 2018	7.	NPTEL Course: Mechanics of Solids. https://onlinecourses.nptel.ac.in/noc17_ce17/preview
	4.	Ramamamrutham.S, Narayan.R, Strength of Materials, 18th ed., Dhanpat Rai Publishing Company, 2014	8.	NPTEL Course: Strength of Materials https://onlinecourses.nptel.ac.in/noc18_ce17/preview

Learning Asses	ssment											
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			- Final Examination (50% weightage)		
	Level of Thinking	CLA –	CLA – 1 (10%)		CLA – 2 (15%)		3 (15%)	CLA – 4	l (10%)#	Final Examination (50% weightage)		
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	40 %		30 %		30 %		30 %		30%		
Level I	Understand	40 /0	-	30 %	-	30 //	-	30 %	-	30%	-	
Level 2	Apply	40 %		40 %		40 %		40 %	-	40%		
Leveiz	Analyze	40 70	-	40 70	-	40 /0	-	40 /0	-	4070	-	
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%		
Level 5	Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-	
	Total	100 %		100 %		10	0 %	10	0 %	100 %		

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Er. G.Hariharanath, GA Consultants, Chennai, gac1996@hotmail.com	1. Dr. G. Appa Rao, Professsor, IIT Madras, garao@iitm.ac.in	1. Dr. K. Gunasekaran, SRMIST
2. Er. AGV. Desigan, Design Group Engineering Consultancy Pvt Ltd. Chennai, desigan.agv@gmail.com	2. Dr. C. Uma Rani, Professor, Anna University, umarani@annauniv.edu	2. Dr. P. R. Kannan Rajkumar, SRMIST

CLR-4:       Determine the stiffness and deflection of helical springs         CLR-5:       Determine modulus of elasticity of concrete, split tensile strength and flexural strength of concrete         CLR-6:       Utilize the testing procedure to determine bond strength between steel bar and concrete (pull-out test)         Course Learning Outcomes (CLO):       At the end of this course, learners will be able to:         CLO-1:       Determine modulus of elasticity of steel, double shear test and hardness test		© Cevel of Thinking (Bloom) T		; //	Engineering Knowledge	2 . <u>ss</u>	ment	4 5	6			<b>y Outc</b> 3 9		<b>6 (PLC</b>		13	
CLR-1:       Utilize the testing procedure to determine modulus of elasticity of steel, double shear test and hardness test         CLR-2:       Utilize the testing procedure of torsional, impact strength of steel and also compressive strength of bricks and conc         CLR-3:       Utilize non-destructive testing technique of rebound hammer and UPV tests         CLR-4:       Determine the stiffness and deflection of helical springs         CLR-5:       Determine modulus of elasticity of concrete, split tensile strength and flexural strength of concrete         CLR-6:       Utilize the testing procedure to determine bond strength between steel bar and concrete (pull-out test)         Course Learning Outcomes (CLO):       At the end of this course, learners will be able to:         CLO-1:       Determine modulus of elasticity of steel, double shear test and hardness test		⇔Level of Thinking (Bloom) →	2	3	-		ment	4 5	6		-	•		•		13	
CLR-2:       Utilize the testing procedure of torsional, impact strength of steel and also compressive strength of bricks and conc         CLR-3:       Utilize non-destructive testing technique of rebound hammer and UPV tests         CLR-4:       Determine the stiffness and deflection of helical springs         CLR-5:       Determine modulus of elasticity of concrete, split tensile strength and flexural strength of concrete         CLR-6:       Utilize the testing procedure to determine bond strength between steel bar and concrete (pull-out test)         Course Learning Outcomes (CLO):       At the end of this course, learners will be able to:         CLO-1:       Determine modulus of elasticity of steel, double shear test and hardness test		3			-		ment	0		7	8	3 9	10	11	12	13	14
CLR-3:       Utilize non-destructive testing technique of rebound hammer and UPV tests         CLR-4:       Determine the stiffness and deflection of helical springs         CLR-5:       Determine modulus of elasticity of concrete, split tensile strength and flexural strength of concrete         CLR-6:       Utilize the testing procedure to determine bond strength between steel bar and concrete (pull-out test)         Course Learning Outcomes (CLO):       At the end of this course, learners will be able to:         CLO-1:       Determine modulus of elasticity of steel, double shear test and hardness test		3	Expected Proficiency (%)	ted Attainment (%)	g Knowledge	sis	opment	-, ade									14
CLR-4:       Determine the stiffness and deflection of helical springs         CLR-5:       Determine modulus of elasticity of concrete, split tensile strength and flexural strength of concrete         CLR-6:       Utilize the testing procedure to determine bond strength between steel bar and concrete (pull-out test)         Course Learning Outcomes (CLO):       At the end of this course, learners will be able to:         CLO-1:       Determine modulus of elasticity of steel, double shear test and hardness test		3	Expected Proficiency	ted Attainment	g Knowled	SIS	amdc	ade ',		CLR-3: Utilize non-destructive testing technique of rebound hammer and UPV tests							
CLR-5 :         Determine modulus of elasticity of concrete, split tensile strength and flexural strength of concrete           CLR-6 :         Utilize the testing procedure to determine bond strength between steel bar and concrete (pull-out test)           Course Learning Outcomes (CLO):         At the end of this course, learners will be able to:           CLO-1 :         Determine modulus of elasticity of steel, double shear test and hardness test		3	Expected Profici	ted Attainr	g Knc	· 🐷	CLR-4: Determine the stiffness and deflection of helical springs										
CLR-6:       Utilize the testing procedure to determine bond strength between steel bar and concrete (pull-out test)         Course Learning Outcomes (CLO):       At the end of this course, learners will be able to:         CLO-1:       Determine modulus of elasticity of steel, double shear test and hardness test		3	Expected PI	ted A	CLR-5 : Determine modulus of elasticity of concrete, split tensile strength and flexural strength of concrete								fion -	8 S	ami		
CLO-1: Determine modulus of elasticity of steel, double shear test and hardness test		3	xpect	Determine the stiffuess and deflection of helical springs         Determine modulus of elasticity of concrete, split tensile strength and flexural strength of concrete         Utilize the testing procession & Design &								⊏thics Individual & Team Work	inica	Mgt	- De	-	2
CLO-1: Determine modulus of elasticity of steel, double shear test and hardness test		3											Communication	Project Mgt & Finance	ife Long Leaming	PS0-1	- PSO-2
			90	ம் 85	н Н	м М	å ,	<u>: ~ &gt;</u>	- -	ە شا	Sustall			<u> </u>	- E	Ĥ	ě.
CLO-2: Identify torsional, impact strength of steel, identify compressive strength of bricks and concrete		3	85	80	H	M	-	- M	-	-					-	H	-
CLO-3 : Apply the knowledge of non-destructive testing technique of rebound hammer and UPV tests		3		85	Н	Н		- M							-	Н	-
LO-4:         Compute stiffness and deflection of helical springs         3         85         80           LO-5:         Determine modulus of elasticity of concrete, split tensile strength and flexural strength of concrete         3         85         80												-	H	-			
CLO-5:         Determine modulus of elasticity of concrete, split tensile strength and flexural strength of concrete           CLO-6:         Find bond strength between steel bar and concrete (pull-out test)		3		80	H H	M M		- M		-					-	H H	-
Duration (hour) 6 6	6	1 - 1			1		6				Τ				6		
S         SLO-1         Determination of strength of steel specimen         Determination of strength of steel specimen         Determination of strength of steel specimen           1-2         SLO-2         under impact test -lzod Test         under double shear test.         Determination of strength of steel specimen							Non Destructive Test using rebound hammer and UPV.										
S SLO-1 Determination of strength of steel specimen Determination of strength of concrete cube Determination of strength			cimen		terminatio				of con	crete			he bel	havior	of Cas	tellate	ed Steel
3-4         SLO-2         under torsion test         and bricks under compression tests.         under impact test - C           s         SLO-1         Determination of hordroge strength test on         Deflection Test on stred, cluminum appointeen         Determination of more	Charpy Tes	t asticity	of star	ام	am (two p		,				Beam						
S         SLO-1         Determination of hardness strength test on specimen using Rockwell & Brinell         Deflection Test on steel, aluminum specimens under central and non-central point load.         Defermination of more from stress-strain gra- test on steel.	aph by con	ducting	g tensio	ion De	termination r and con				tween	steel	To study the stress patterns on different models using photo elasticity test-Demo						
<ol> <li>IS 5816:1999 (Reaffirm – 2004), Splitting Tensile Strength of Concrete-Method of Test, Bureau of Indian Standards, New Delhi.</li> <li>Strength of Materials Laboratory - Laboratory Manual, SRMIST</li> </ol>	Dell 4. IS 1	hi.	005, M	<i>lethod</i>	– 2004) I for Brine					-							
earning Assessment																	
Bloom's CLA – 1 (10%) CLA – 2 (15%)								– 4 (10	/\#			Fina	al Exa	minat	ion (5	)% we	eightage
	CLA Theorv	<u> </u>		actice		The		- 4 (10)	<u>%)</u> # Prac	tice	-		Theor				actice
evel 1 Remember 40% - 30%	-			0 %		-			30						80%		
evel 2 Apply - 40 % - 40 %	-		4(	0%		-			40	%			-			4	40%
evel 3 Evaluate - 20 % - 30 %	-		30	0%		-			30	%			-			3	80%
Total 100 % 100 %		100 %						100 %							100 %	)0 %	
# CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Stud	dy, MOOC	Cs, Cer	rtificati	ions, (	Conf Par	er etc											

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Er. G. Hariharanath, GA Consultants, Chennai, gac1996@hotmail.com	1. Dr. G. Appa Rao, Professsor, IIT Madras, garao@iitm.ac.in	1. Dr. K. Gunasekaran, SRMIST
2. Er. AGV. Desigan, Design Group Engineering Consultancy Pvt Ltd. Chennai, desigan.agv@gmail.com	2. Dr. C. Uma Rani, Professor, Anna University, umarani@annauniv.edu	2. Dr. P. R. Kannan Rajkumar, SRMIST

Course	18CEC204T	Course	ENCIN	EERING SURVEYING	Course		С				Drot	essior		0.50					L	Т	P C
Code	100502041	Name	ENGIN		Category	y	C				FIO	622101		Jie					2	1	0 3
Pre-requi	es ^{IVII}	0: "5	Co-requisite Courses	18CEC204L	C	gress ourse		lil													
Course Off	fering Department	Civil Ei	ngineering	Data Book / Codes/Standards	Nil																
Course Lea	arning Rationale (CL	.R): The put	pose of learning this course is to:		L	earni	ng				I	Progra	am Le	earniı	ng Oi	utcon	nes (l	PLO)			
CLR-1 : (	Utilize chain, compass	s & Plane tabl	e surveying		1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14 15
	Utilize concepts of Lev										_			⋧							
	Utilize working proced				Ê	(%)					arch			Sustainability		~					
CLR-4 : (	Utilize operations of ta	achometric su	rveying		(Bloom)		it (%)	dge		ent	Rese			ain		Work		g			
CLR-5 : (	Utilize the knowledge	of surveying i	n carrying out Civil Engineering w	orks	9 (B	enc	nen	wle	Ś	m da	Å,	age	m	Sust		ح ۲		Finance	p		
				out foundation trenches and curves	king	Proficiency	Attainment	Knc	lysi	Development	sign	Usi	Culture	∞ŏ		Team	ы	8 E	Leaming		
		,			Thinking		Att	lig	Analysis		Design,	Tool Usage	Cu	ent		۰ð	icati	Mgt.	Le		
Course Lea	arning Outcomes (Cl	LO): At the	end of this course, learners will be	able to:	Level of T	Expected	Expected	Engineering Knowledge	Problem /	Design &	Analysis,	Modern T	Society &	Environment	Ethics	Individual	Communication	Project M	Life Long	PSO-1	PSO-2 PSO-3
CLO-1: /	Apply the principles ar	nd making of l	inear, direction measurements an	d creation of Plan/Map	2	90	80	Н	Н	-	-	L	-	-	-	-	М	-	-	Н	
			point/or set of points w.r.t the give		3	85	75	Н	Н	-	-	М	-	-	-	-	М	-	-	Н	
				nts at times of obstacle and inaccessible points	3	80	75	Н	Н	-	-	М	-	-	-	-	М	-	-	Н	
						~ -			1												

H H -H H -H H -

 3
 85
 80

 2
 85
 80

3 80 75

- H -- H -

-

М -

---М --Н --

М

М

-- М -

M -

ΜH

M H -

--

-

 CLO-2:
 Determine of set the alludge of the points set of points with the alludge of the points of set of points with the alludge of the points of set of points with the alludge of the points of set of points with the alludge of the points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of set of points of points of set of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of points of point

Durati	ion (hour)	9	9	9	9	9
S-1		<b>Surveying</b> Definition, Principles of Surveying	Methods: Radiation, Intersection	Theodolite Vernier & microptic, description and uses Temporary Adjustments of Vernier transit	Horizontal & Vertical for staff held Inclined Elevation & Depression on Fixed Hair Systems, with and without Analytic Lens	Layout, setting out works for foundation trenches
5-1	SLO-2	Classification of Surveying, Chain: Description, types of Chain & Accessories	Resection: two point &three-point Problem	Permanent Adjustments of the Vernier transit	Horizontal & Vertical for Normal staff Elevation & Depression. On Fixed Hair Systems, with &without Analytic Lens	Curves: Description & Components, Horizontal and Vertical curves, types
	510-1	Conventional signs, Field & office work chaining	Levelling: Level Line, Horizontal Line, horizontal plane	Horizontal angles measurements: Radiation & Repetition Method	Movable Hair methods: Principle, Stadia constants, Analytic Lens	Simple curves: Terms & Components
S-2	510-2	Ranging: Direct &Reciprocal ranging Procedures	Vertical Plane, datum, vertical line, elevation. Levels and Staves & types	Traversing, Closing error & distribution, Trigonometrical levelling: Heights & Distances	Tangential Systems: Both Angles are Angles of Elevation	Methods of Simple curves: setting with chain and tapes, Setting out procedure
S-3	SLO-1 SLO-2	Tutorial: Solving Problems	Tutorial: Solving Problems Tutorial: Solving Problems Tu		Tutorial: Solving Problems	Tutorial: Solving Problems
S-4			Spirit level, sensitiveness, Bench marks & important Terminology in Levelling	Base of the Object accessible, Base of the object Inaccessible: Instrument station in the same vertical Plane as Elevated Object. (Single Plane Method)	Tangential Systems: Both Angles are angles of Depression	Methods of Simple curves Rankies method: Tangential angles by theodolite(Single Theodolite Method)
	510-7	Compass: Prismatic compass, Surveyor's compass	Temporary Adjustments of Vernier Transit	Base of the object Inaccessible: Instrument station in the same vertical Plane as Elevated Object	Tangential Systems: One Angle of Elevation and Other of Depression	Methods of Simple curves Rankies method: tangential angles by theodolite(Double Theodolite Method)
S-5	SLO-1	Meridians, Bearings & Types, Bearing systems &Types	Permanent adjustments of Vernier transit	Base of the object Inaccessible: Instrument station in the same vertical Plane as Elevated Object: Axis at different Levels	Substence Bar Method	Setting out procedure by rankies method, compound and reverse curves, Transition curves

	SLO-2		Longitudinal & cross-sectional Levelling & plotting	Base of the object Inaccessible: Instrumental Station not in the same vertical plane as the elevated object. (Double Plane Method)	Solt-Roducing Lachomotors	Contours: Definition, Contour Interval & Consideration Factors		
S-6	SLO-1 SLO-2	Tutorial: Solving Problems	Tutorial: Solving Problems	Tutorial: Solving Problems	Tutorial: Solving Problems	Tutorial: Solving Problems		
S-7	SLO-1	Adjustment of error, Graphical Method	Fly & Check Levelling, Height of collimation, rise & fall Method Booking & Reduction Types	tacheometric Systems, Types Tangential,	Engineering Surveys: Reconnaissance, Preliminary surveys for Engineering Projects	Contours, Contouring Methods		
	SLO-2	Magnetic declination, dip, Traversing, Types & Plotting	Gradient & Missing Values on booking & Reduction	Stadia Systems: types, Principle of stadia systems	Location surveys for Engineering Projects	Characteristics of contours		
	SLO-1				Setting out Works, Aims Horizontal Control, Vertical control	Uses of contours		
S-8	SLO-2	Merits and demerits of Plane Table, & Operations of Plane Table	Curvature, Refraction & combined	HOVATION X. DONROSSION ON FIXED Hair	Base Lines & Types of Grids for carrying setting out works	Plotting – Calculation of areas and volumes		
S-9	SLO-1 SLO-2			Tutorial: Solving Problems	Tutorial: Solving Problems	Tutorial: Solving Problems		

Learning Resources	1. 2. 3. 4.	Kanetkar T., Surveying and Levelling, Vols. I &II, United Book Corporation, Pune, 2007 Punmia B.C, Surveying, Vols. I, 17 th ed., Laxmi Publications, 2016 Chandra A.M, Plane Surveying and Higher Surveying, 3 rd ed., New Age International (P) Limited, 2015 Clark.D, Plane and Geodetic Surveying, Vols. I & II, 17 th ed., C.B.S. Publishers and Distributors, 2002	7. 8.	Punmia B.C, Surveying, Vols. II, 16 th ed., Laxmi Publications, 2016 James M. Anderson, Edward M. Mikhail, Introduction to Surveying, 3 rd ed., McGraw Hill, 2001 N N Basak, Surveying & Levelling, 1 st ed., Tata Mc Graw Hill, 2015 Arora K.P, Surveying, Vol. 3,11 th ed., Standard Book House, 2013 NRTEL course: Surveying (Mch), https://entol.og.io/courses/015107122/1
	<i>''</i>		9.	NPTEL course: Surveying (Web). https://nptel.ac.in/courses/105107122/1

Learning Ass	essment											
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Einal Examination	(50% woightage)	
	Level of Thinking	CLA – 1 (10%)		CLA – 2 (15%)		CLA – 3 (15%)		CLA – 4	l (10%)#	<ul> <li>Final Examination (50% weightage)</li> </ul>		
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-	
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-	
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-	
	Total	100 % 100 %		10	0%	10	0%	100 %				

Course Designers			
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts	
1. Er. Hariharanath, GA Consultants, Chennai, gac1996@hotmail.com	1. Dr. K. Srinivasa Raju, Anna University, raju_irs@yahoo.com	1. Mr. K Prasanna, SRMIST	2. Ms. S Durga Devagi, SRMIST
2. Er. AGV. Desigan, Design Group Engineering Consultancy Pvt Ltd. Chennai, desigan.agv@gmail.com	2. Dr. E.S.M. Suresh, NITTTR, Chennai, esmsuresh@gmail.com	3. Mr V Satya Ramesh Potti, S	SRMIST

Course Code	18CEC204L	Course Name	ENGINEERING SURVEYING LABORA		Course Category	,	С							T 0	P C 2 1						
Pre-requisite Courses Course Offerin	INII	Civil Engineering	Courses 18CEC204T	( / Codes/Standards		gressi ourses		Nil													
oouise onenin	g Department	own Engineering		() ooucs/otanuarus	1.11																_
Course Learnin	ng Rationale (CL	R): The purpose of learning	ng this course is to:		Le	earnin	g					Prog	ram Le	arning	Outco	omes (	(PLO)				
		f chain Surveying			1	2	3		1	2 3	4	5	6	7 8	9	10	11	12	13	14 1	ز
		f Compass surveying		om)	(%)	(%		e	+					×							
		of principles of Plane table s		Bloc	)cy (	ent (		ledg	mem		Φ			Mol		Finance	_				
	e the principles o				ing (	icier	Eu		Nor	/sis	âu,	Jsag	nre		Team Work	c	Ë	Learning			
	1 1	f operation of theodolite			hink	Prof	Atta		A gr	(nal)	Desi		Cult	lity o	& Te	catio	jt. &	Lear			
CLR-6 : Appl	y theodolite princi	iple for measuring height an	1 distance		of TI	ted	ted		serir	n A ⊓	sis, l	n To	∆ ⊗	nab	lual	iuni	хЩ	bug	-	~ ~	,
Course Learnin	a Outcomos (Cl	LO): At the end of this cou	rea laarnara will ba abla ta:		evel of Thinking (Bloom)	Expected Proficiency (%)	S Expected Attainment (%)		Engineering Knowledge	Problem Analysis Design & Development	Analysis, Design, Besearch	Modern Tool Usage	Society & Culture	Sustainability Ethics	Individual &	Communication	^o roject Mgt.	-ife Long I	- OS	- OSG	3
	rse and prepare t				3	<u>90</u>	85	-		<u> </u>		2 2	-	<u>іо</u> і		H	<u>م</u>	-	H	- H	
		recise location of points usi	na prismatic compass		3	85	80			H L	-	Ī	-		H	H	-	-	H	- H	
	are site layouts				3	80	75			H M	- 1	M	-			H	-	-	H	- F	
	le land levels and	contouring			3	85	80			H M		М	-			Н	-	-	Н	- H	Ē
CLO-5 : Dete	rmine horizontal o	distance of the inaccessible	target		3	85	80	_	Н	H H	-	М	-		Н	Н	-	L	Н	- H	Ē
CLO-6 : Estin	nate the height of	inaccessible target			3	80	75		H	H H	-	М	-		Н	Н	-	L	Н	- H	
Duration (hour)		6	6	6							6						6				
S SLO-1	Chain surveying	, Calculation of area using	Traversing, Prismatic compass, Running	Resection, Field solution of	of two no	int	F	Poducti	on of l	evels b	v Risa	and F	all	The	odolite	Moa	SUIPA V	ortica	analo	he and	
		erpendicular offset	closed and open compass traverse, plotting and adjustments of traverse	problems	n two po	nn.	n	nethod						Hei	ght of t			entica	angio	3 anu	
S       SLO-1       Chain surveying, Calculation of area using       Plane table Surveying by Intersection       Resection, Field solution of Three point       Theodolite, Measure horizontal angles by       Height and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single and distance by Single								le Plai	те												
	Traversing, mea survey lines by correction of Lo	Reduction of levels by He. Collimation method	ight of			Theodo eiterati		easure thod	horizo	ntal ar	ngles b	/ Hei Mei	ght and thod	d dista	ince bj	y Doul	ole Pla	ine			
Learning       1. Punmia B.C, Surveying, Vols. I, 17 th ed., Laxmi Publications, 2016         Resources       2. Bhavikatti, S.S, Surveying and Leveling, Vol. I and II, I.K. International, 2010         Learning Assessment																					

Learning Ass	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	4 (10%)#		n (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	•	40.0/	•	20.0/		20.0/		20.0/		200/
Level 1	Understand	-	40 %	-	30 %	-	30 %	-	30 %	-	30%
Level 2	Apply		40 %		40 %		40 %		40 %		40%
Level 2	Analyze	-	40 /0	-	40 /0	-	40 /0	-	40 /0	-	4070
Level 3	Evaluate		20 %		30 %		30 %		30 %		30%
Level 3	Create	-	20 %	-	50 %	-	30 %	-	30 %	-	50%
	Total	10	0 %	10	0%	10	0 %	10	0 %	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Er. Hariharanath, GA Consultants, Chennai, gac1996@hotmail.com	1. Dr. K. Srinivasa Raju, Anna University, raju_irs@yahoo.com	1. Dr. Sachikanta Nanda, SRMIST
2. Er. AGV. Desigan, Design Group Engineering Consultancy Pvt Ltd. Chennai, desigan.agv@gmail.com	2. Dr. E.S.M. Suresh, NITTTR, Chennai, esmsuresh@gmail.com	2. Dr. J. Satish Kumar, SRMIST

Cour Coc		18CEC205T	Course Name		STRU	ICTURAL ANALYSIS			urse egory	,	С					Prof	fessio	onal C	Core					L 2	T 1	P 0	C 3
	equisite urses	18CE203T			Co-requisite Courses	18CEC205L			Co	gress ourse	s ľ	Nil															
Course	Offering	g Department	Civil E	Engineering		Data Book	/ Codes/Standards		IS 928	82: 20	02 Inc	dian S	tanda	ard W	ire Ro	pes a	and St	trand	ls for S	Suspe	nsion	Bridg	jes –	Spec	ificatio	ns	
Course	Loarnin	g Rationale (CL	D). Tho p	urnoso of loarni	ng this course is to:					earnir		ſ					Drogr	am l	oarn	ina O	utcom						
		-		•		ation mathed			1	2	3		4	2	3	4	5	6	7	8				12	13	14	15
CLR-1	: Onde : Annly	rstand the benav v moment distribu	tion method	in the analysis	res using slope defle of indeterminate str	uctures			-	2	3	-	1	2	3	4	Э	0		0	9	10	11	IZ	13	14	15
		exposed to stiffne							Ê		_					ç			Environment & Sustainability								
		ze indeterminate							Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)		dge		ent	Analysis, Design, Research			aina		Individual & Team Work		ge				
CLR-5						under moving loads			ng (B	cienc	mer		owle	SI.	mdo	Ľ.	sage	e	Sust		M N		linar	ing			
CLR-6	R-6: Get an insight into the behavior of arches and suspension bridges								inkin	rofic	vttain		g Kn	alys	level	esig	ol Us	Sultu	nt &		Te	ation	Se F	earn			
									of Th	ted F	ted A		Engineering Knowledge	Problem Analysis	Design & Development	is, D	Modern Tool Usage	Society & Culture	nmei		ual 8	Communication	Project Mgt. & Finance	-ife Long Learning	-	5	e
Course	Learnin	g Outcomes (Cl	LO): At the	end of this cou	ırse, learners will be	able to:			ivel o	cpect	cpect		gine	oble	sigr	lalys	oder	ociet	lviro	Ethics	divid	mmo	ojec	e Lo	PSO - 1	PSO - 2	- OS4
CLO-1	· 400/	slone deflection	method to a	nalvze indetern	ninate heams and n	lane rigid jointed frames			3	ய் 90	ய் 75	5 <u>H</u> H - <u>M</u>				ū -	ш -	<u> </u>	ٽ -	- -	-	й Н	č.	<u>ă</u>			
CLO-2						I plane rigid jointed frame	S		3	95	75						-	-	-	-	-	-	-	H	-	-	
CLO-3	. Make		r based matr			ess method to analyze in			3	90	75	5 H H - M M -					-	-	-	-	-	-	Н	М	-		
CLO-4				flexibility metho	od to analyze indete	rminate beams and plane	e rigid jointed frames		3	80	75		Н	Н	-	М	-	-	-	-	-	-	-	-	Н	-	-
CLO-5	. Draw	influence line dia	agrams for d	eterminate and		tures and apply the same			3	95	75		Н	Н	-	М	-	-	-	-	-	-	-	-	Н	-	-
CLO-6	: fixed	arches			0,	olic arches and study con ges with two and three hi		s of	3	85	75		Н	Н	-	М	-	-	-	-	-	-	-	-	Н	-	-
	7 11 10 1	Influence Lir		ns (ILD) and		uspension Bridges	Flexibility Mat	rix Mo	ethod			S			ction ution			ent		Dir	ect an		emen Meth		ness	Matri	ĸ
Duratio	n (hour)		9			9	9								9								9				
	SLO-1	Introduction to in	nfluence line	diagram (ILD)	Introduction to arci	hes: three hinged, two	Revisiting Castigliano's	onor	av tho	orom	F	ixed e	nd m	omen	ts, eff	ect of	f rotat	tions	and	Relati	on bet	tween	n SDN	I, ma	trix stil	fness	
		and Muller Bres	lau's principl	le	hinged, fixed. Edd						Se				port n						d, der						
S-1	SLO-2	ILD for BM and	SF for cantil	ever		nalyze three hinged rith supports at same	Form basic determinate indeterminate structure redundant reactions or	by re	leasin	g the	e	quilibi	ium, e	deriva	oositic ation o				on i	flexibi	itages lity me ever us	ethod,	Anal	lysis d	of prop	ped	
S-2	SLO-1	ILD for BM and overhanging beat trailer load							Ŭ.	Ŭ	A ad di (S	method (SDM) Apply SDM for drawing bending momen					nt m	Analy	ze con ss me	ntinuo							
	SLO-2	Find max. BM, S simply supporter subject to movin	d, overhangi	ing beam	Analyze three hing supports at the sar	ed circular arches with me level	Determine deflection of beams using flexibility of			rminat	Apply SDM for the analysis of hearrs un				ŕ		direct porta			netho	d for s	ingle					
S-3	SLO-1 SLO-2	Tutorial class			Tutorial class		Tutorial class				Т	iutoria	l clas	s						Tutori	al clas	ss					
S-4	SLO-1	Concept of abso simply supported	d beams		parabolic arches ir movement, tempel shortening	rature change and rib	Derive direct flexibility r Solving propped cantile method	ver us	sing fl	exibili	ly oi	of static indeterminacy 2 using SDM					М		coord	inate s	syster	ms – e	eleme	ent and	d glob	al	
Г		Eind absolute m	ovimum DM	and SE in a	Analyza two hinda	d parabolio aroboo with a	Formulate flexibility me	triv for	r o tru		n 14	Moment Distribution Method (MDM) Derive					alam	ont a	tiffnor		triv for	e truco	. –				

SLO-2 Find absolute maximum BM and SF in a single point load Analyze two hinged parabolic arches with a Formulate flexibility matrix for a two-span continuous beam with one of the end

Moment Distribution Method (MDM), definition of stiffness, carry over factors

Derive element stiffness matrix for truss, beam, frame elements in local coordinates

		of moving loads		supports fixed	with demonstrative analysis of propped cantilever	
S-5			Analyze two hinged parabolic arches with udl occupying the entire span	Analyze two span continuous beam with one of the end supports fixed using direct flexibility method	Analyze 2 span- continuous beams using MDM	Rotation matrix for truss element and transformation of element stiffness matrix in local coordinates to global coordinates
3-3			Analyze two hinged parabolic arches with part udl occupying anywhere in the span	Form flexibility matrix for single storey portal frame with static indeterminacy of 2 with supports at same level and analyzing	Analyze 3 span- continuous beams using MDM includingeffect of support settlements	Rotation matrix for frame element and transformation of element stiffness matrix in local coordinates to global coordinates
S-6	SLO-1 SLO-2	Tutorial class	Tutorial class	Tutorial class	Tutorial class	Tutorial class
S-7	SLO-1	ILD for two span continuous beam for end support reaction	Introduction to suspension cables	Form flexibility matrix for single storey portal frame with static indeterminacy of 2 with supports at different levels and analyzing		Compute load vector in global coordinates for truss problems. Assemble global stiffness matrix for truss problem
3-7	SLO-2	ILD for two span continuous beam for mid support reaction	Analyze suspension cables with udl – maximum and minimum cable tension and support reactions – resultant (Supports at same level)	Find support reactions for a single storey portal frame with static indeterminacy of 3 with supports at same level and subjected to a lateral point load at beam level		Compute joint load vector in beam/frame problems with uniformly distributed and point loads
	SLO-1	ILD for two span continuous beam for mid support moment	Analyze suspension cables with udl – maximum and minimum cable tension and support reactions – resultant (Supports at different levels)	Form flexibility matrix for a single storey portal frame with a static indeterminacy of 3 with supports at same level and subjected to udl over the beam	Fixed end moments due to sway in single storey frames and analysis of single storey portal frames with sway using MDM	Assemble global stiffness matrix for two span continuous beams. Partition global stiffness matrix and find unknown displacements and reactions
S-8	SLO-2	ILD for two span continuous beam for span BM and span shear	Find forces at anchor towers – saddle support with rollers and hinged supports. Introduction to two hinged and three hinged stiffening girders	Find support reactions for a single storey portal frame with static indeterminacy of 3 with supports at same and different levels and subjected to either udl over the beam or lateral load at beam level	KANI'S METHOD Introduction to Kani's method for multistory frames and definition of rotation factors and sway corrections	Assemble global stiffness matrix for single storey portal frame, partitioning, solve for unknown displacements and find element forces from known displacements upto a static indeterminacy of 3
S-9	SLO-1 SLO-2	Tutorial class	Tutorial class	Tutorial class	Tutorial class	Tutorial class

[		1.	Menon D, Structural Analysis, Alpha Science International Limited, 2009	5.	Bhavikatti S. S, Structural Analysis, Vol-1 &2, E-2, Vikas Publishing House Pvt Limited, 2009
	Learning	2.	Pandit G.S., Gupta S.P., Structural Analysis- A Matrix Approach, 2nd ed., Tata McGraw-Hill, 2010	6.	Hibbeler R.C., Structural Analysis, 8th ed., Prentice Hall, 2012
	Resources	3.	Punmia B.C., Ashok Kumar Jain, Arun Kumar Jain, Theory of Structures, 12th ed., Laxmi Publications, 2004	7.	NPTEL Course: Structural Analysis – I. https://onlinecourses.nptel.ac.in/noc17_ce25/preview
		4.	Vaidyanathan R, Perumal. P, Comprehensive Structural Analysis-Volume I & II, Laxmi Publications, 2004	8.	NPTEL Course: Structural Analysis – II https://nptel.ac.in/downloads/105105109/

essment										
Ploom's			Contir	nuous Learning Ass	essment (50% weigh	ntage)			Einal Examination	(50% woightage)
	CLA –	1 (10%)	CLA – 2	2 (15%)	CLA – 3	3 (15%)	CLA – 4	(10%)#		(50% weightage)
Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
Total	10	0 %	100	0%	100	) %	100	)%	100	) %
	Understand Apply Analyze Evaluate Create Total	Level of Thinking         CLA –           Remember         40 %           Understand         40 %           Apply         40 %           Evaluate         20 %           Create         100	Level of Thinking     CLA – 1 (10%)       Remember     40 %       Understand     40 %       Apply     40 %       Evaluate     20 %       Create     100 %	Bloom s         CLA - 1 (10%)         CLA - 2           Level of Thinking         Theory         Practice         Theory           Remember         40 %         -         30 %           Apply         40 %         -         40 %           Analyze         20 %         -         30 %           Create         20 %         -         30 %	Blooms         CLA - 1 (10%)         CLA - 2 (15%)           Level of Thinking         Theory         Practice         Theory         Practice           Remember         40 %         -         30 %         -           Understand         40 %         -         40 %         -           Apply         40 %         -         40 %         -           Evaluate         20 %         -         30 %         -           Total         100 %         100 %         100 %	Blooms         CLA - 1 (10%)         CLA - 2 (15%)         CLA - 3           Level of Thinking         Theory         Practice         Theory         Practice         Theory           Remember         40 %         -         30 %         -         30 %           Apply         40 %         -         40 %         -         40 %           Evaluate         20 %         -         30 %         -         30 %           Total         100 %         100 %         100 %         100 %	Level of Thinking         CLA - 1 (10%)         CLA - 2 (15%)         CLA - 3 (15%)           Theory         Practice         Theory         Practice         Theory         Practice           Remember         40 %         -         30 %         -         30 %         -           Apply         40 %         -         40 %         -         40 %         -         30 %         -           Apply         40 %         -         40 %         -         40 %         -         40 %         -           Evaluate         20 %         -         30 %         -         30 %         -         30 %         -           Total         100 %         100 %         100 %         100 %         100 %         100 %	Blooms         CLA - 1 (10%)         CLA - 2 (15%)         CLA - 3 (15%)         CLA - 4           Level of Thinking         Theory         Practice         Theory         30 %         -         30 %         -         30 %         -         30 %         -         40 %         -         40 %         -         40 %         -         40 %         -         40 %         -         30 %         -         30 %         -         30 %         -         30 %         -         30 %         -         30 %         -         30 %         -         30 %         -         30 %         -         30 %         -         30 %         -         30 %         -	Blooms         CLA - 1 (10%)         CLA - 2 (15%)         CLA - 3 (15%)         CLA - 4 (10%)#           Level of Thinking         Theory         Practice         Theory         Practice         Theory         Practice           Remember         40 %         -         30 %         -         30 %         -         30 %         -           Apply         40 %         -         40 %         -         40 %         -         40 %         -           Evaluate         20 %         -         30 %         -         30 %         -         30 %         -           Total         100 %         100 %         100 %         100 %         100 %         100 %	Blooms         CLA - 1 (10%)         CLA - 2 (15%)         CLA - 3 (15%)         CLA - 4 (10%)#         Final Examination           Level of Thinking         Theory         Practice         Theory         T

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Er. G.Hariharanath, GA Consultants, Chennai, gac1996@hotmail.com	1. Dr. G. Appa Rao, Professsor, IIT Madras, garao@iitm.ac.in	1. Dr. K. Sathyanarayanan, SRMIST
2. Er. AGV. Desigan, Design Group Engineering Consultancy Pvt Ltd. Chennai, desigan.agv@gmail.com	2. Dr. C. Uma Rani, Professor, Anna University, umarani@annauniv.edu	2. Prof. G. Augustine Maniraj Pandian, SRMIST

Course Code	18(1) (1) (1)	ourse COM	IPUTER AIDED STI	RUCTURAL ANALYS	IS LABORATORY		ourse tegory	C	C				Profes	sional	Core					L 0	T 0	P C 2 1
Pre-requisite Courses Course Offerin	ng Department	Civil Engineering	Co-requisite Courses	18CEC205T	ook / Codes/Stan	dards		ressive urses	e _N	il												
Course Learn	ing Rationale (CLR):	The purpose of learni	ing this course is to:				Lea	arning	1				Pr	ogram	Lear	ning (	Outcor	mes (I	PLO)			
CLR-1 : Utili	ize the Calculate the Are	a of Steel of beams u	sina MS Excel proa	ram			1	2 3	3	1	2	3	4 5	5 6	7	8	9	10	11	12	13	14 15
CLR-2: Utili	ize the method of solving	Matrix Equation usin	g Stiffness Matrix				Ê			n												
	alyze behavior of 2D and				BS		L evel of Thinking (Bloom)	Expected Proficiency (%)	쫎 Expected Attainment (%)	H Engineering Knowledge		Design & Development		D			Individual & Team Work		Project Mgt. & Finance			
	alyze behavior of Plane S						ing (	icier		Non	/sis	Idoje	ĥ,	Mouerri i ou usage Societv & Culture	~*		eam	Ę	Fin	ife Long Learning		
	ize the flexural and shea quire knowledge on the to						hink	Prof	Atta	Ъ	Problem Analysis	Devi	nesign;	Society & Culture	Environment &		& Te	Communication	gt. &	Lear		
CLR-0: Acq	uire knowledge on the to	Disional Denavior of R	CC beam				of T	cted	cted	eeri	em /	n &	Research	t 8	nuo	s ar	dual	nuni	ct M	ong	-	2 6
Course Learn	ing Outcomes (CLO):	At the end of this cou	ırse learners will be	able to:			evel	edx	adx	ingir	lobi	lesic	Rese		nvin	Ethics	ivipu	om	roje	ife L	- OS4	PSO -
	culate the Area of Steel								85	H	M		-   I	<u>2 0,</u> 1 -		<u>-</u>	Ħ	-	-		Ĥ	H H
	ve matrix equation using								80	H M H -						-	Н	-	-	-	Н	H H
	port on the behavior of 2		sistant Steel Frames	S					85	Н	М	-	- I		-	-	Н	-	-	-	Н	H H
	alyze the behavior of Pla								80	H M H -						-	Н	-	-	-	Н	H H
	alyze the Flexural and sh		C beams				3		80 80						-	-	H	-	-	-	H	- H
CLO-6 : Des	sign the beam for torsion						3	00 0	80	п	M	IVI	- 1	- 1	-	-	Н	-	-	-	Н	- H
Duration (hour)	) (	5		6		6						6					-		6			
S SLO-1 1-2 SLO-2		cel for calculating Ast	Solving Matrix Prob	lems in MS Excel	Exercise the so	olution in STAA	D Pro or	ETABS		alysis in S Cloads an			ETABS	for mo	oving	Study flexui		əhavio	r of R	CC be	am te	st under
<b>S</b> 3-4 SLO-2	Solving Problems in MS	S Excel		Resistant Steel Frames r ETABS for real buildir		olution in STAA	D Pro or	ETABS		ne Pin Joi or ETAB		teel Fr	ames u	sing S	TAAD	Study shea		əhavio	r of R	CC be	am te	st under
<b>S</b> SLO-1 <b>5-6</b> SLO-2		n using Stiffness Matrix	Exercise the solution	n in STAAD Pro or ETA	BS Exercise the so and verification	olution in STAA n using text boo				ercise the I verification						Study torsic		əhavio	r of R	CC be	am te:	st under
Learning Resources	1. IS 456 :2000, PI	ain and Reinforced Co	oncrete: Code of Pra	actice, Bureau of India	n Standards, New	Delhi.	2.	Labo	orator	y Manual	- SRM	IIST										
Learning Asse	essment																·					
	Bloom's		(400()	Continuo	us Learning Asses							01.4		0/ \//			Final	Exam	inatio	n (50º	% wei	ghtage)
	Level of Thinking	CLA – 1 Theory	(10%) Practice	CLA – 2 (1 Theory	5%) Practice	CL Theory	A – 3 (1	5%) Prac	otico		Theo		- 4 (10	/%)# Prac	tico			heory		<u>, ,</u>	Prac	
Level 1	Remember Understand	-	40 %		30 %	-		30			-	лу		30				-			30	
Level 2	Apply Analyze	-	40 %	-	40 %	-		40	)%		-			40	%			-			40	%
Level 3	Evaluate Create	-	20 %	-	30 %	-		30	)%	% - 30 %						-			30	%		
	Total	100		100 %			100 %						100 %						10	0 %		
# CLA – 4 can	h be from any combination	on of these: Assignme	nts, Seminars, Tech	Talks, Mini-Projects,	Case-Studies, Sel	lf-Study, MOO	Cs, Cer	tificatio	ons, C	conf. Pape	er etc.,											
Course Desig	ners																					
Experts from Ir	ndustry				Experts from	Higher Techn	ical Insti	itutions	S					Inte	ernal E	Expert	s					
1. Er. G.Hariha	aranath, GA Consultants	, Chennai, gac1996@	hotmail.com		1. Dr. G. App	a Rao, Profes	ssor, IIT	Madra	as, ga	arao@iitm	.ac.in			1. 1	Dr. K.	Sathy	anaray	yanan	, SRN	1IST		
2 Er AGV Do	esigan Design Group En	ainaarina Canaultana	v Dut I to Channai	daalaan aay@amail a	om 2 Dr C Um	- Dani Drafaa			un un ile	-	i@onn	ouniu	adu	2	Drof (	- Auo	ustine	Mani		ndian		NOT

1. Er. G.Hariharanath, GA Consultants, Chennai, gac1996@hotmail.com	1. Dr. G. Appa Rao, Professsor, IIT Madras, garao@iitm.ac.in	1. Dr. K. Sathyanarayanan, SRMIST
2. Er. AGV. Desigan, Design Group Engineering Consultancy Pvt Ltd. Chennai, desigan.agv@gmail.com	2. Dr. C. Uma Rani, Professor, Anna University, umarani@annauniv.edu	2. Prof. G. Augustine Maniraj Pandian, SRMIST

Course Code	18CEC206T	Course Name	HYDRAULIC EI	NGINEERING AND DESIGN	Cou Cate		С		Professional Core					T 1		C 3							
Pre-requisi Courses	18CEC2021		Co-requisite Courses	18CEC206L		Cou	ressive urses	Nil															
Course Offer	ing Department	Civil En	gineering	Data Book / Codes/Star	ndards A	lil																	
Course Lear	ning Rationale (CL	R): The purp	pose of learning this course is to:		Learning Program Learning Outcomes (PLO)																		
CLR-1: Uti	ilize dimensional and	d model analy	sis			1	2 3		1 2 3 4 5 6 7 8 9 10 11 12 13 14						15								
CLR-2: Ad	ldress concepts rela	ted to open ch	nannel flow									_			ž								
			easuring discharge and velocity in			Ê	(%)	5				Research			Sustainability		<u> </u>						
			and functions of roto-dynamic pur			(Bloom)		Ì	adge		lent	ese			tain		Work		Finance				
			nponents and functions of positive			g (B	ienc		owle	<u>.</u>	mdc	Ľ.	age	θ	Sust		Ē		inar	ŋg			
CLR-6 : Uti	ilize the components	s, functions an	nd uses of Pelton wheel, Kaplan an	nd Francis turbines		Thinking	Proficiency Attainment		Knc	Analysis	svel	Design, I	Tool Usage	Culture	~ð		Team	tion	∞ŏ	Learning			
						Thi	d Pr		ering	An	å	Ğ	<u>1</u>	00	nen		al &	nica	Mgt.	g Le			
Course Lear	ning Outcomes (CL	O): At the e	end of this course, learners will be	able to:		Level of	Expected		Engineering Knowledge	Problem .	Design & Development	Analysis,	Modern	Society	Environment	Ethics	Individual	Communication	Project Mgt.	Life Long	PSO - 1		PSO - 3
CLO-1 : Ide	entify and solve vario	ous fluid proble	ems involving dimensional and mo	odel analysis		3	80 70	)	Н	Н	-	М	-	-	-	-	-	-	-	-	Н	-	-
CLO-2: Analyze problems related to open channel flow						3	85 75		Н	Н	Н	L	-	-	-	-	-	-	-	-	Н	-	-
CLO-3 : Ide	entify various device	s to measure	and estimate discharge and veloci	ity in open channel			85 75	5	Н	М	-	-	-	-	-	-	-	-	-	-	Н	-	-
			ons of rotodynamic pump			3	85 75		Н	Н	-	-	-	-	-	-	-	-	-	-	Н	-	-
CLO-5 : Ide	entify the component	ts and functior	ns of positive displacement pump			3	85 75		Н	Н	-	-	-	-	-	-	-	-	-	-	Н	-	-
CLO-6: Ide						3	80 70	)	Н	Н	Н	L	-	-	-	-	-	-	-	-	Н	-	-

Duratio	on (hour)	9	9	9	9	9
	SLO-1	Dimensional and Model analysis	Open channel flow	Backwater computation by direct step method	Gauging flumes, non-modular/venturiflume	Air vessel and its functions
S-1	SLO-2	Use of dimensional analysis, fundamental quantities and derived quantities	Comparison between open channel and pipe flows; Types of channels and types of flow in channels	Rapidly varied flow, hydraulic jump and its types	Standing wave / Modular flume	Working principle of hydraulic ram, jet pump and gear pump
S-2	SLO-1	M-L-T system for various quantities	Chezy's formula and Manning's formula	Expression for loss of energy due to jump, length of hydraulic jump, height of jump	Measurement of velocity, current meter	Turbines
3-2	SLO-2	Dimensional homogeneity	Solving problems using tutorial sheet 4	Energy dissipaters and stilling basins	Floats, Hot-wire Anemometer	Components of hydroelectric power plant, classification of hydraulic turbines
• •	SLO-1	Solving problems using tutorial sheet 1	Solving problems using tutorial sheet 4	Solving problems using tutorial sheet 7	Solving problems using tutorial sheet 10	Solving problems using tutorial sheet 13
S-3	SLO-2	Solving problems using tutorial sheet 1	Design of most economical section of a channel	Solving problems using tutorial sheet 7	Solving problems using tutorial sheet 10	Solving problems using tutorial sheet 13
S-4	SLO-1	Rayleigh's method	Rectangular channel and trapezoidal channel	Measurement of discharge and velocity in open channel	Pumps	Pelton wheel, velocity triangles and work done
5-4	SLO-2	Buckingham's $\pi$ method	Non uniform flow through open channels	Flow over notches; Rectangular, triangular	Centrifugal pump, components and working	Design aspects of Pelton wheel
S-5	SLO-1	Selection of repeating variables; Application of dimensional analysis	Specific energy and specific energy curve	Trapezoidal and stepped notch	Velocity triangle, work done, losses and efficiencies	Francis turbine, velocity triangles and work done
3-3	SLO-2	Model analysis	Critical depth, critical velocity	Types of Weirs	Specific speed, multistage centrifugal pump – pumps in parallel and series	Design aspects of Francis turbine
S-6	SLO-1	Solving problems using tutorial sheet 2	Solving problems using tutorial sheet 5	Solving problems using tutorial sheet 8	Solving problems using tutorial sheet 11	Solving problems using tutorial sheet 14
3-0	SLO-2	Solving problems using tutorial sheet 2	Solving problems using tutorial sheet 5	Solving problems using tutorial sheet 8	Solving problems using tutorial sheet 11	Solving problems using tutorial sheet 14

S-7	SLO-1	Similitude – Geometric similarity		Effect on discharge over a notch or weir due to error in the measurement of head	Characteristic curves, NPSH	Kaplan turbine, design aspects of Kaplan turbine			
3-1	SLO-2	Kinematic and dynamic similarity	Gradually varied flow	Velocity of approach and end contraction	Reciprocating pump, components and working	Draft tube, types			
S-8	SI ()-1	Dimensionless numbers and their significance	Characteristics of surface profiles	Cippoletti weir, broad crested weir	Coefficient of discharge, slip, indicator diagram	Specific speed and its significance			
5-0		Model (or similarity) laws; Model studies in fluid flow problems	Length of back water curve and afflux	Narrow crested weir, Ogee weir and drowned/submerged weir	Effect of acceleration and friction, Maximum speed of reciprocating pump	Characteristic curves of hydraulic turbines			
S-9	SLO-1	Solving problems using tutorial sheet 3	lems using tutorial sheet 3 Solving problems using tutorial sheet 6 Solving problems using tutorial sheet 9		Solving problems using tutorial sheet 12	Solving problems using tutorial sheet 15			
3-9	SLO-2	Solving problems using tutorial sheet 3	Solving problems using tutorial sheet 6	Solving problems using tutorial sheet 9	Solving problems using tutorial sheet 12	Solving problems using tutorial sheet 15			
Learn Resou	•		- Fluid Machines, Standard book house, 2005 on of fluid mechanics, Tata McGraw Hill, 200 Aachines, S.Chand, 2014	2 5. NPTEL Cou	uli P.N., Applied Hydraulic Engineering, Yesd rse-Hydraulics. https://nptel.ac.in/courses/10 rse-Fluid Machinery. https://nptel.ac.in/course	5106114/#			

Learning Assessment													
	Bloom's Continuous Learning Assessment (50% weightage)												
	Level of Thinking	CLA – 1 (10%)		CLA – 2 (15%)		CLA –	3 (15%)	CLA – 4	l (10%)#	Final Examination (50% weightage)			
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-		
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-		
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-		
Total		10	0 %	100 %		10	0%	10	0%	100 %			

Course Designers									
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts							
1. Mr. Abdul Hakeem, National Remote Sensing Center, Hyderabad, abdulhakeem_k@nrsc.gov.in	1. Dr. R. Saravanan, Anna University, rsaran@annauniv.edu	1. Dr. R. Sathyanathan, SRMIST							
2. Dr. Sat Kumar Tomer, Satyukt Analytics Pvt Ltd., Bengaluru, sat@satyukt.com	2. Dr. S. Saravanan, NIT, Tiruchy, ssaravanan@nitt.edu	2. Dr. DeepthaThattai, SRMIST							

Course Code					Cour Categ		С					Profes	sional	Core				_	L 0	T 0	P 2	C 1
Pre-requisite Courses         Nil         Co-requisite Courses         18CEC206T								Nil														
Course Offerin	ng Department	Civil Engineering	Data Boo	ok / Codes/Standards	Nil																	
Course Learni		Learning Program Learning Outcomes (PLO)																				
		d Manning's equations				1 :	2 3		1	2	3	4 5	6	7	8	9	10	11	12	13	14	15
	lyze the concept of											_		⋧								
		notches and flumes			/ -	m is	(%)	-	е		+-	earc		Sustainability		¥						
		perating the current meter	norsible nump and approved nump for quitab	la applicationa	i	(Bloom)	) trie	-	ledg		men	Ses		stain		Wor		Finance	_			
		ip, reciprocaulity purity, sub-	nersible pump and gear oil pump for suitab r suitable applications		— []	ĝ.	icier		Non	/sis	dole	gn, l	Culture	Su Su		eam	ç	Fine	Learning			
							Atta		ы К	lan	Devi	Desi	Cult	ent 8		& Te	catic	gt. &	Lear			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:							Expected Proficiency (%)	-	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Society &	Environment &	Ethics	Individual & Team Work	Communication	Project Mgt.	Life Long	PSO - 1	- OSA	PSO - 3
		Chezy's and Manning's equa	ations				90 85		Н	М	-		-	-	-	Н	-	-	-	Н		Н
	lyze hydraulic jum						90 85		Н	М	-		-	-	-	H H	-	-	-	Н		H H
	luate discharge us luate velocity usin	sing notches and flumes					90 85 90 85		H H	M M	-		-	-	-	н Н	-	-	-	H H		H H
			ating pump, submersible pump and gear oi	il numn			90 85 90 85		H	M	-		-	-	-	н	-	-	-	H		н Н
		of Pelton wheel turbine and F		rpump			90 85		H	M	-		-	-	-	H	-	-	_	H		H
	, š																					<u> </u>
Duration (hour		6	6	6							6							6				
S SLO-1 1-2 SLO-2	channel	zy's constant for an open	Measure hydraulic jump	Determine coefficient of triangular notch	ge fo	r	Test F	Test Performance of centrifugal pump Test Perf					st Performance of gear oil pump									
S         SLO-1         Determine Manning's roughness coefficient         Determine coefficient of discharge for rectangular notch         Measure velocity using					g current	rent meter Test Performance of reciprocating pump Test Performance of Pelton when					whee	turbir	ie									
S         SLO-1           5-6         SLO-2   Determine specific energy curve Measure flow using rectangular and triangular notches Measure discharge usin					ing ventu	enturiflume Test Performance of submersible pump Test Performance of Francis turbine																
Learning Resources	Learning       1. Modi, P.N., Seth S.M., Hydraulics and Fluid Machines, Standard book house, 2005       3. Rajput R.K, Fluid Mechanics and Hydraulic Machines, S.Chand and Company Ltd., 2013																					
Learning Asse	essment																					
			Q ť	a Looming According (	- 00/ .		1								1							

Leanning Ass	Coolincin												
	Bloom's		Continuous Learning Assessment (50% weightage)										
		CLA –	1 (10%)	CLA – 2	2 (15%)	CLA – S	3 (15%)	CLA – 4	(10%)#		n (50% weightage)		
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember		40 %		30 %		30 %		30 %		30%		
Lever	Understand	-	40 /0	-	30 %	-	30 %	-	30 %	-	3070		
Level 2	Apply		40 %	_	40 %	_	40 %	_	40 %	_	40%		
2010/2	Analyze		10 70		10 /0		10 /0		10 /0		1070		
Level 3	Evaluate		20 %		30 %		30 %		30 %		30%		
Levers	Create	-	20 /0	-	30 /0	-	30 /0	-	30 %	-	3070		
	Total	10	0 %	100	0%	100 %		100	0%	10	0%		

_

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Abdul Hakeem, National Remote Sensing Center, Hyderabad, abdulhakeem_k@nrsc.gov.in	1. Dr. R. Saravanan, Anna University, rsaran@annauniv.edu	1. Dr. R. Sathyanathan, SRMIST
2. Dr. Sat Kumar Tomer, Satyukt Analytics Pvt Ltd., Bengaluru, sat@satyukt.com	2. Dr. S. Saravanan, NIT, Tiruchy, ssaravanan@nitt.edu	2. Mr. Shaik NiyazuddinGuntakal, SRMIST

Cou Coo		18CEC207T	Course Name	DESIGN OF RC	CAND STEEL STRUCT	JRES	-	ourse tegory	,	С				P	ofessi	onal C	ore					L '	T   0	D C
Co	equisite ourses e Offering	<i>Nil</i> g Department	Civil Engineering	Co-requisite Courses	Nil Data Book	<pre><!-- Codes/Standards</th--><th></th><th>C</th><th>gress ourse 6 :200</th><th>es</th><th>Nil P 16-C</th><th>Columr</th><th>n Desig</th><th>gn Cha</th><th>ts, IS</th><th>800: 2</th><th>007, 5</th><th>Steel</th><th>Tables</th><th></th><th></th><th></th><th></th><th></th></pre>		C	gress ourse 6 :200	es	Nil P 16-C	Columr	n Desig	gn Cha	ts, IS	800: 2	007, 5	Steel	Tables					
Course	e Learnin	g Rationale (CL	R): The purpose of learni	ing this course is to:				L	earnii	ng	]				Prog	gram l	earn	ing O	utcom	nes (F	PLO)			
CLR-1	: Utilize	e the behavior of	RC sections under flexure a	-	t introduced to the releva	nt IS codes		1	2	3		1	2	3 4		6		-				12	13	14 15
CLR-2 CLR-3 CLR-4 CLR-5 CLR-6	: Utilize : Analy : Desig	ze behavior of St	t state method performing design of RC be teel sections under tension, using Limit state method performing design of steel t	compression and fle	exure, identify relevant IS			Level of Thinking (Bloom)	S Expected Proficiency (%)	S Expected Attainment (%)		H Engineering Knowledge	Problem Analysis	Design & Development Analysis, Design,	Research Modern Tool Usage	Society & Culture	Environment & Sustainability		Individual & Team Work	Communication	Project Mgt. & Finance	${f \pi}$ Life Long Learning	-	-2 -3
			LO): At the end of this cou						Expe	Expe		Engir	Probl	Desig Analy	Rese	Socie	Envir Susta	Ethics	Indivi	Comr	Proje	Life L	H PSO - 1	PSO - 2 PSO - 3
			nal loads on RC members, t		neir behavior, identify rele	evant IS codes		3					-	- ۸	-	-	-	-	-	-	-	H H		M - M -
CLO-2 CLO-3			C sections under flexure an od of design to RC beams,		foundations			2	80 85	75 80		H H	H H	- N H F		-	-	-	-	-	-	н Н		M - M -
CLO-4	: Ident	ify effect of extern	nal loads on Steel members	, factors influencing	their behavior, identify re	elevant IS codes		3	85	80		Н	H M				-	-	-	-	-	Н	Н	М -
CLO-5			of Steel sections under tens			- !		2	80	75						-	-	-	Н	Н	<u>M</u> -			
CLO-6	: Appiy	/ Limit state metri	od of design to steel tension	n, compression and	nexural members and th	eir connections						-	<u> H H M</u>											
Duratio	on (hour)		12		12		2					12				12								
S-1	SLO-1	Grade of concre IS code provision design mix	N TO RC DESIGN ete - concrete mix design- ns-Design of nominal and		ailing of one way slabs	RC BEAMS Concept of load trans beam-Introduction to reinforced and flange recommendations as	singly d beai	and do ms <b>-</b> De	oubly sign	-		STAIR-CASES sign of dog-legged stair-case-Procedure				duro	Introd		Туре	s of fo			ransfer ndation	
	SLO-2		ncepts- Design Philosophy- and Limit state method of		ous slabs-Procedure	Design of singly reinf Procedure	orced	beams	-	L	Desigr	n of sta	nir-cas	es-Exa	nple 1			Desig 456:2	n reco 000	mme	ndatio	ns as	per l	S
S-2	SLO-1	RC DESIGN: Pa state method-ad	artial safety factors -Limit Ivantages	RC SLABS Design of continuo	ous slabs-Example 1	RC BEAMS Design of singly reinfi Example 1	orced	beams	-			AIR-C		s es-Exa	nple 2			Desig	OUND n of is d-slop	olated		datior	n-axia	lly
	SLO-2	IS 456:2000	recommendations as per	Design of continuo	ous slabs-Example 2	Design of singly reinfe Example 2	orced	beams	-	ŀ	Reinfo	rceme	nt det	ailing-L	se of S	SP 34		Desig	n of is d-step	olated	d foun	datior	n-axia	lly
S-3	SLO-1	AND PLASTIC J structures - Prop Indian Standard sections- Design 800:2007-Analys		<b>STEEL TENSION</b> Design provisions o	MEMBERS of tension members	STEEL COMPRESS Design of simple colu				<b>STEEL CONNECTIONS</b> Design of pin connections				STEEL BEAMS Design provision				s of be	ams					
	SLO-2	Calculation of Lo Design Philosop State Method of factors- General per IS800:2007	oads as per IS codes- ohy-Introduction to Limit f design – Partial safety I design requirements as	Design of simple te Effective net area-	Types of failures	Design of simple colu	mns-l	Exampl	e 1	L	Desigr	of lap	joints	s-Proce	lure			Proce		1	beam	s-resi	traine	<i>]-</i>
S-4	SLO-1		YSIS :Plastic analysis, echanism, Plastic moment Plastic modulus	STEEL TENSION I Design of plates wi tension-Procedure	ith holes subjected to	STEEL COMPRESSI Design of simple colu								TONS s-Exam	ole 1				<b>L BE</b> A n of sil		beam	s-rest	traine	1-
	SLO-2		ape Factor for rectangular, circular and Design of plates with holes subjected to Types of built up columns Design of lap joints Example 2 Lateral torsional buckling				ng bei	haviou	ır of															

		[			RC COLUMNS	
S-5	SLO-1	RC DESIGN :Behaviour of RC sections under flexure, stress blocks – IS, AC and BS	RC SLABS Reinforcement detailing of continuous slabs	RC BEAMS Design of doubly reinforced beams- Procedure	Short and long columns, Effective length slenderness ratio, un braced and braced columns -Design recommendations as per	RC FOUNDATIONS Design of isolated foundation-eccentrically loaded-Procedure
	SLO-2	Behaviour of RC sections under shear	Design of two way slabs-Procedure	Design of doubly reinforced beams- Example 1	IS 456:2000 Design of axially loaded short columns	Design of isolated foundation-eccentrically loaded-Example
S-6	SLO-1	RC DESIGN :Design recommendations as per IS 456:2000-flexure	RC SLABS Design of two way slabs-Simply supported on the edges with corners not held down	RC BEAMS Design of doubly reinforced beams- Example 2	RC COLUMNS Uniaxial and biaxial bending of columns	RC FOUNDATIONS Design of combined rectangular foundation-Procedure
0-0	SLO-2	Design recommendations as per IS 456:2000-shear	Design of two way slab- Simply supported on the edges with corners held down	Ductile detailing of beams as per IS 13920	Use of interaction curves from SP16	Design of combined rectangular foundation-Example
S-7	SLO-1	PLASTIC ANALYSIS: Shape Factor for I section	STEEL TENSION MEMBERS Design of angles subjected to tension- Procedure	STEEL COMPRESSION MEMBERS Design of lacing-Procedure	STEEL CONNECTIONS Design of butt joints-Procedure	STEEL BEAMS Check for lateral torsional buckling of unrestrained beams-Steps
	SLO-2	Shape Factor for T and C sections	Design of angles subjected to tension- Example	Design of lacing-Example	Design of butt joints-Example 1	Check for lateral torsional buckling of unrestrained beams-Example
S-8	SLO-1	PLASTIC ANALYSIS: Load factor, Static method of plastic analysis	STEEL TENSION MEMBERS Design of built-up tension members- various cross-sections	STEEL COMPRESSION MEMBERS Design of batten-Procedure	STEEL CONNECTIONS Design of butt joints-Example 2	STEEL BEAMS Design of beams subjected to biaxial bending-Procedure
	SLO-2	Mechanism method of plastic analysis	Design of built-up tension members- Procedure	Design of batten-Example	Design of Truss joint-Procedure	Design of beams subjected to biaxial bending-Example 1
S-9	SLO-1	RC SLABS Introduction-Types of slab -Introduction on moment co-efficient and design recommendations as per IS 456:2000	<b>RC SLABS</b> Design of two way slabs-with edges fixed	<b>RC BEAMS</b> Design of flanged beams-Procedure	<b>RC COLUMNS</b> Design of long columns	RC FOUNDATIONS Introduction to Strip Footing
	SLO-2	Design of one way slabs-Procedure	Design of two way slabs-Example	Design of flanged beams-design for torsion	Ductile detailing of columns as per IS 13920	Introduction to Raft Footing
S-10	SLO-1	RC SLABS Design of one way slabs-Example 1	RC SLABS Reinforcement detailing of two way slabs	RC BEAMS Design of flanged beams-Example 1	RC COLUMNS Reinforcement detailing at beam-column joints using SP34	RC FOUNDATIONS Design of pile foundation, pile cap
	SLO-2	Design of one way slabs-Example 2	Use of design handbooks	Design of flanged beams-Example 2	Extension of design of columns to piles	Reinforcement detailing
S-11	SLO-1	<b>PLASTIC ANALYSIS</b> :Analysis of indeterminate beams with uniform $M_p$	STEEL TENSION MEMBERS Design of built-up tension members- Example	<b>STEEL CONNECTIONS</b> Types of connections-Bolted and welded	STEEL CONNECTIONS Design of Truss joint-Example 1	STEEL BEAMS Design of beams subjected to biaxial bending-Example 2
	SLO-2	Analysis of indeterminate beams with varying $M_p$	Tension splices	Types of bolts and welds-Permissible stresses	Design of Truss joint-Example 2	Design of built-up beams-Procedure
S-12	SLO-1	PLASTIC ANALYSIS :Analysis of single bay single storey rectangular portal frames-with same column heights	STEEL COMPRESSION MEMBERS Design provisions of compression members	STEEL CONNECTIONS Load transfer mechanism	<b>STEEL BEAMS</b> Behaviour of steel members in flexure	STEEL BEAMS Design of built-up beams-Example 1
<b>5-1</b> 2		Analysis of single bay single storey rectangular portal frames with varying column heights	Effective length-Slenderness ratio-Types of buckling-Classification of cross-sections	Types of failure of connections	Phenomenon of web buckling and web crippling	Design of built-up beams-Example 2
Learni Resou		<ol> <li>Unnikrishna Pillai.S, Devdoss Menon, R</li> <li>Subramanian.N, Design of Reinforced C</li> </ol>		<ul> <li>Sraw, 2003</li> <li>Shah. V. L., Veena Gore, I</li> <li>2013</li> <li>Punmia.B.C, Ashok Kuma Publications Pvt. Ltd., 200</li> <li>NPTELCourse: Design of</li> </ul>	of Steel structures-Limit state method, Oxforc .imit State Design of. Steel Structures, 1st ed ar Jain, Arun Kumar Jain,Comprehensive De 07 Reinforced Concrete Structures: https://onlii Steel Structures https://onlinecourses.nptel	I, Structures Publications, 2009 sign of Steel structures, Laxmi necourses.nptel.ac.in/noc18_ce24/preview

Learning Ass	sessment												
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Einal Examination	n (50% weightage)		
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#		i (50% weigi itage)		
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-		
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-		
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-		
	Total	10	0 %	100	0%	10	0 %	100	) %	100 %			

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Er. G.Hariharanath, GA Consultants, Chennai, gac1996@hotmail.com	1. Dr. G. Appa Rao, Professsor, IIT Madras, garao@iitm.ac.in	1. Dr. K. Sathyanarayanan, SRMIST
2. Er. AGV. Desigan, Design Group Engineering Consultancy Pvt Ltd. Chennai, desigan.agv@gmail.com	2. Dr. C. Uma Rani, Professor, Anna University, umarani@annauniv.edu	2. Prof. G. Augustine Maniraj Pandian, SRMIST

Course Code	18CEC208T	Course Name	ENVIRONMENTA	L ENGINEERING AND DESIGN	Course Category	С	Professional Core	L 2	T 1	P 0	C 3
Pre-requisite Courses	e _{Nil}		Co-requisite Courses	18CEC208L	Progres		Nil				
Course Offeri	ng Department	Civil Engineering		Data Book / Codes/Standard	s Nil						

Course Learning Rationale (CLR): The purpose of learning this course is to:	L	earni	ng					Prog	ram L	earn	ing O	utcor	nes (F	PLO)				
CLR-1: Utilize the sources of water supply and its quality	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Design and Construct water treatment for domestic supplies										Y								
CLR-3: Utilize sanitary engineering concepts for implementation	Ê	()	-				arch			pilit								
CLR-4: Design sewage treatment plants for towns and cities	(Bloom)	y (%)	t (%)	dge		ent	see			aina		Work		8				
CLR-5: Utilize solid waste management mechanisms	(B)	ency	nen	wle	s	ŭ	, Re	Usage	Ð	Sustainability		≤ E		Finance	ing			
CLR-6: Analyze the role of Government and NGO's in sustaining the environment	ikinç	Proficie	Attainment	Knc	Analysis	Development	Design,	US:	Culture	~ŏ		Team	ion	δ Έ	arni			
	Thinking	μΡ		ing	Ana	& De	B	Tool	& CL	nent		~ŏ	licat	Mgt.	) Le			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering Knowledge	Problem	Design 8	Analysis,	Modern .	Society 8	Environment	Ethics	Individual	Communication	Project N	Life Long	PSO - 1	1.1	PSO - 3
CLO-1: Identify the various sources of water and its quality	2	85	80	Ħ	Ħ	M	Ĺ	-	Ĺ	Ħ	-	-	-	-	L	Ħ	-	-
CLO-2: Design water treatment units for domestic purposes	3	85	75	Н	Н	Н	Н	-	-	Н	-	-	-	-	-	Н	-	-
CLO-3: Identify the collection and conveyance of domestic sewage	2	80	75	Н	Н	М	М	-	L	Н	-	-	-	-	L	Н	-	-
CLO-4 : Design of sewage treatment units for sanitary sewage	3	85	75	Н	Н	Н	Н	-	-	Н	-	-	-	-	-	Н	-	-
CLO-5: Apply the concept of reducing, reuse, recycling in solid waste management	2	85	80	Н	Н	М	М	L	L	М	-	-	-	-	L	Н	-	-
0-6: Analyze the environmental legislations			75	Н	Н	М	-	-	L	М	М	-	-	-	-	Н	-	-

		Water Supply	Water Treatment	Sanitary Engineering	Disposal of Sewage	Solid Waste Management & Air Pollution
Durati	on (hour)	9	9	9	9	9
S-1		Water quality requirement for different beneficial uses	Concept and objectives of water treatment	Domestic and storm water quantity of sewage and flow variations	Concept of sewage disposal	Concept and generation of solid waste
3-1		Importance of water supply scheme and Need for protected water supply	Principles of Aeration and Sedimentation. Types of sedimentation & design	Conveyance of sewage and types of sewers. Design of sewers	Pollution due to improper disposal of sewage	Municipal Solid Waste(MSW), composition and other parameters
S-2	SLO-1	Various sources of water available for supply	Principles of Coagulation and Flocculation	Pumping of sewage and sewer appurtenances	Zones of pollution and Self-purification of rivers	Quantification and Collection of MSW
3-2	SLO-2	Per capita consumption-Demand	Types of coagulants used in water treatment	Laying and jointing of sewer lines	Oxygen sag curve. National river cleaning plans Dissolved Oxygen and BOD	Treatment and disposal of MSW
S-3	SLO-1	Solving problems using Tutorial Sheet 1	Solving problems using Tutorial Sheet 4	Solving problems using Tutorial Sheet 7	Solving problems using Tutorial Sheet 10	Solving problems using Tutorial Sheet 13
0-0	SLO-2	Solving problems using Tutorial Sheet 1	Solving problems using Tutorial Sheet 4	Solving problems using Tutorial Sheet 7	Solving problems using Tutorial Sheet 10	Solving problems using Tutorial Sheet 13
S-4	SLO-1	Quality issues in various sources of water	Concept and theory of Filtration	Different plumbing systems adopted in buildings	Disposal of treated sewage in irrigation land	Waste from commercial establishments and other urban areas
3-4		Water Pollution, sources, causes and effects. Water quality characteristics	Working principles of slow sand filters and design	Sanitary fittings used in buildings. Quantification of storm water	Sewage sickness and remedial measures	Effect of solid waste on environment
S-5	SI 0-1	WHO and BIS standards and Water Borne Diseases	Working principles of rapid sand filters and design	Concept of Primary, Secondary and Tertiary treatments	Concept of sludge management	Segregation and disposal methods of sloid waste
0-0	SLO-2	Population forecast using different methods	Disinfection of water and Chlorination	Screening and Grit Chambers	Thickening, Conditioning and Dewatering of sludge	Reduction at source, recovery and recycle
S-6	SLO-1	Solving problems using Tutorial Sheet 2	Solving problems using Tutorial Sheet 5	Solving problems using Tutorial Sheet 8	Solving problems using Tutorial Sheet 11	Solving problems using Tutorial Sheet 14
0-0	SLO-2	Solving problems using Tutorial Sheet 2	Solving problems using Tutorial Sheet 5	Solving problems using Tutorial Sheet 8	Solving problems using Tutorial Sheet 11	Solving problems using Tutorial Sheet 14

SRM Institute of Science & Technology – Academic Curricula (2018 Regulations) - Control copy  $182\,$ 

	SLO-1	Water requirements for industrial need and agriculture		Concept of aerobic and anaerobic treatment systems		Concept of Air Pollution: Properties and monitoring of Air pollutants
S-7	SLO-2	Components of water supply system		Primary settling tanks and secondary settling tanks	Energy recovered from sludge	Air quality standards and control measures for Air Pollution
S-8	SLO-1		Effective water management Rain water harvesting methods	Principles of septic tanks and design.	Revenue from end product of sludge management	Basic concept of Noise Pollution and measurements
3-0	SLO-2		Measures taken for protecting the existing water bodies	Activated Sludge Process and Trickling Filters	Design of Sludge digestion tanks	Various control methods of noise pollution Acceptable standards for Noise levels
S-9	SLO-1	Solving problems using Tutorial Sheet 3	Solving problems using Tutorial Sheet 6	Solving problems using Tutorial Sheet 9	Solving problems using Tutorial Sheet 12	Solving problems using Tutorial Sheet 15
0-9	SLO-2	Solving problems using Tutorial Sheet 3	Solving problems using Tutorial Sheet 6	Solving problems using Tutorial Sheet 9	Solving problems using Tutorial Sheet 12	Solving problems using Tutorial Sheet 15
Learni Resou	•	<ol> <li>S. K. Garg, Water Supply Engineering</li> <li>S. K. Garg, Sewage Disposal and Air I</li> </ol>	g, Treatment and Reuse, Tata McGraw Hill, , Khanna Publishers, 2017 Pollution Engineering, Khanna Publishers, 20 d Treatment, Ministry of Drinking water and 3	6. CPHEEO Manual on Se 7. NPTEL Course-Water, S	Hilary Theisen, Samuel Vigil, Integrated Solio werage and Sewage Treatment, Ministry of L Society & Sustainability. https://onlinecours ater Treatment & Recycling https://onlinecou	Irban Development, New Delhi, 2010 es.nptel.ac.in/noc18_hs36/

Learning Ass	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weigl	htage)			Einal Examination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA – 2	2 (15%)	CLA – S	3 (15%)	CLA – 4	(10%)#		i (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total		0 %		) %		0 %		0%	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Rajkumar Samuel, Hubert Enviro-Care Systems, Chennai, rajkumar@hecs.in	1. Dr. S. Madhava Kumar, IIT Madras, mathav@iitm.ac.in	1. Mr. K. Prasanna, SRMSIT
2. Mr. A. Abdul Rasheed, CMWSS Board, juruterarasheed@gmail.com	2. Dr. G. Dhinagaran, Anna University, Chennai, dhinagaran@annauniv.edu	2. Mr. D. Justus Reymond, SRMIST

Course Code	18CEC208	ourse ame	ENVIRONMENT	AL ENGINEERING LA	BORATORY		ourse tegory	,	С				Prof	essior	al Co	re				 (	L T 0 0	P 2	C 1
Pre-requisite Courses	NII		Co-requisite Courses	18CEC208T			C	gress ourse		Nil													
Course Offering	g Department	Civil Engineering		Data E	ook / Codes/S	tandards	Nil																
Course Learnin	g Rationale (CLR):	The purpose of learn	ing this course is to	):			L	earnir	ng					Progra	am Le	arnin	g Out	come	es (PL	.0)			
CLR-1 : Evalu	ate characteristics of w	vater					1	2	3		1 2	3	4	5	6	7	8	9 '	10 1	1	12 1	3 14	15
	ate the characteristics	of waste water					(L	(%	(%		e	t						¥		-			
	luct tests on water and						Bloc	lcy (	ent ('		edg	nen		e				Wor		ance	_		
	e turbidity meter, pH m	1	,				) Gu	cien	nme		NOM siar	lop	ů,	lsag	en			am	c i	Ĩ	Learning		
	e spectrophotometer, h		noise level meter				inki	Prof	Attai		Id K	) eve	Desi		Cult	lit ≥		å Å	atio	JT. Ø	Lear		
CLR-6: Cond	R-6 : Conduct titration experiments						of Thinking (Bloom)	Expected Proficiency (%)	S Expected Attainment (%)		Engineering Knowledge Drohlem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Sustainability		Individual & Team Work	Communication	roject Mgt. & Finance	Life Long L	- 2 -	e,
	urse Learning Outcomes (CLO): At the end of this course, learners will be able to:						evel (	bec	bec		gine ahla	sigr	alys	oder	ciet	stai	Ethics	livid	E .	olec	Life Lo		
			irse, learners will b	e able to:			_		ш					_		1 0		_	<u> </u>	-			
	ate the characteristics						3	90	85 80		H M H M		-	-				-		-	- +		H
	vze the characteristics of water and wastewater s						3	85 90	85		H M H M		-	-	-	<u>- H H -</u> H -						H H	
	ify the working of turbio		loctrical conductivi	ty motor			3	90 85	80		H N		-	-	-	-	-	-		-	- F		H
	ify the working of spect						3	85	80		H N		-	-	-	- H	-	-	-	-	-		H
	luct titration based expe		nume sumpler, nor				3	85	80		HN		-	-		H	-	-		-	-   ł		H
	1		1	•		•			1	1 1		-1								-			<u> </u>
Duration (hour)	6	)		6		6						6								6			
<b>S</b> SLO-1 <b>1-2</b> SLO-2	Determine turbidity, ele	ctrical conductivity, pH		ontents in water: Total, bended, dissolved, settl solids	e Determine	alkalinity and Acidi	ty			Determii magnesi			s, calc	ium an	d	D	etermi	ne chi	loride a	and s	ulphate		
<b>S</b> SLO-1 <b>3-4</b> SLO-2	Determine optimum coa	agulant dose	Ŭ	al Oxygen Demand (Co		Dissolved Oxygen Oxygen Demand(B		nd	l	Determii	e breal	point c	hlorina	tion		D	etermi	ne co	pper				
S SLO-1 5-6 SLO-2	Determine bacteriologic measurement: MPN	cal quality	Monitor Ambient a	ir quality (TSP,RSPM)	Monitor Ar	nbient air quality (S	0x)		1	Monitor .	Ambien	air qua	ality (NOx) Measure Ambient noise										
Learning Resources		er Supply Engineering age Disposal and Air		ers, 2017 ing, Khanna Publishe	rs, 2017		3 4			0-2012 mental							Burea	u of l	Indian	Star	ndards,	New D	elhi.
Learning Asses	ssment	Π															П						· · · · · · · · · · · · · · · · · · ·
	Bloom's		(400())			ssessment (50% v						<u> </u>		(4.00/)			– Fi	inal E	xamin	atior	n (50%	weight	age)
	Level of Thinking	CLA – 1	(10%) Practice	CLA – 2 ( Theory	15%) Practice		A – 3		ractic		-	CL heory	.A – 4		# ractic		-		eory		`	Practice	• /
	Pemember	Theory	Practice	rneory	Practice	Theory		Р	Iacilo	e		neory		F	Tacuc	5		1.06	eory			Tacuce	;
Level 1 Remember - 40 % - 30 %					-		30 % - 30 % - 30%																

 
 Total
 100 %
 100 %
 100 %

 # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,
 Course Desig

-

-

40 %

20 %

-

-

Apply Analyze

Evaluate

Create

Level 2

Level 3

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Rajkumar Samuel, Hubert Enviro-Care Systems, Chennai, rajkumar@hecs.in	1. Dr. S. Madhava Kumar, IIT Madras, mathav@iitm.ac.in	1. Mrs. Sija Arun, SRMIST
2. Mr. A. Abdul Rasheed, CMWSS Board, juruterarasheed@gmail.com	2. Dr .G. Dhinagaran, Anna University, Chennai, dhinagaran@annauniv.edu	2. Mr. S. Ramesh, SRMIST

-

-

40 %

30 %

40 %

30 %

100 %

-

-

100 %

-

-

40%

30%

40 %

30 %



Cou Coo		18CSC201J	Course Name	HMS		urse egory		С				Proi	fessio	nal Co	ore				L 3	T 0	P 2	C 4		
Co	requisite ourses e Offering	<i>Nil</i> Department	<pre><!-- Codes/Standards</pre--></pre>	1	Prog Co Vil	ressi urses		18CSC20	4J															
Course	e Learning	g Rationale (CLI	R): The purpose of learn	ning this course is to	:			Le	arnin	ıg					Progr	ram Lo	earni	ng Out	come	s (PL(	D)			
	Utilize the different data types; Utilize searching and sorting algorithms for data search Utilize linked list in developing applications Utilize stack and queues in processing data for real-time applications							1	2	3	1	2	3	4	5	6	7	8 9	9 1	0 11	12	13	14	15
				a al tima annliastiana										ų			līty							
CLR-3 CLR-4	· Utilize	e stack and queue e tree data storad	es in processing data for r le structure for real-time a	polications	j			(mod	(%)	(%)	ge		ut	Research			inabi		ž	ą	2			
CLR-5			d shortest data search in		application development			(Bid	ency	nent	wled	S	pme	, Re	age	Ð	usta		leam work	nanc	p	<b>b</b>		
CLR-6	: Utilize	the different type	es of data structures and i	its operations for rea	I-time programming appli	cations		nkinç	ofici	ttainr	Хnо Х	alysi	evelc	sign	I Us	ultur	t & S		lea	LION &	arni			
		•	<b>.O):</b> At the end of this co	•				Level of Thinking (Bloom)	Expected Proficiency	Expected Attainment (%)	Engineering Knowledge		Design & Development	: Analysis, Design,	- Modern Tool Usage	Society & Culture	Environment & Sustainability	-		Communication		PSO - 1	PSO - 2	PSO – 3
			-linear data structures. Cre bes of linked lists and eval		earching and sorting			3 3	80 85	70 75	L	H	- L	H M	L	-	-		L I M I		H		-	-
			leue data structures and e		าร			3		70	M	H	M	H	L	-	-		M I				-	-
CLO-4	: Create	e tree data struct	ures and evaluate its type	s and operations				3	85	80	М	Н	М	Н	L	-	-	- 1	M	-			-	-
CLO-5			cture, evaluate its operation			path		3		75	Н	Н	М	Н	L	-	-		M I		Н		-	-
CLO-6	: Const	truct the different	data structures and evalu	late their types and o	operations			3	80	70	L	Η	-	Η	L	-	-	- 1			Н	-	-	-
Duratio	on (hour)		15		15	1	15						15	5							15			
	SLO-1	Introduction-Bas	ic Terminology	Array		Stack ADT				G	General Tr	ees					(	Graph T	Fermir	nology				
S-1	SLO-2	Data Structures		Operations on Arr Deletion	ays – Insertion and	Stack Array Impleme	ntation			T	ree Term	inolog	ies				(	Graph T	raver	sal				
	SLO-1	Data Structure C	Dperations	Applications on Ai	rrays	Stack Linked List Imp	olementa	ation		T	ree Repre	esenta	ntion				7	Topolog	ical s	orting				
S-2	SLO-2	ADT		Multidimensional /	Arrays- Sparse Matrix	Applications of Stack Conversion	- Infix to	Postf	ix	T	ree Trave	ersal					/	Minimui	n spa	nning	tree –	Prims	Algo	ithm
• •	SLO-1	Algorithms – Sea	arching techniques	Linked List Implen	nentation - Insertion	Applications of Stack	- Postfix	x Eval	uatior	n B	linary Tre	e Rep	resent	ation				Minimuı Algorith		nning	Tree	Krusi	kal's	
S-3	SLO-2	Complexity – Tin	ne , Space Trade off	Linked List- Delet	tion and Search	Applications of Stack	- Balan	cing s	ymbo	ols E	xpressior	Tree	s				/	Network	flow	proble	m			
	SLO-1		ntation of Searching -	Lab 4 : Implement		Lab 7 :Implementatio	n of stad	ck usii	ng arra	ay L	ab 10: Im	pleme	ntatio	n of T	ree us	sing ar	ray I	Lab 13:	Imple	menta	tion o	f Grap	h usir	ig
S 4-5	SLO-2	Linear and Binar	ry Search Techniques	Insertion, Deletion	1.	and Linked List											4	Array						
S-6	SLO-1	Algorithms - Sori	ting	Applications of Linked List Applications of Stack- Ne Calls			- Neste	ed Fur	nction	В	linary Tre	e Trav	versal				5	Shortes	t Path	Algor	ithm-	Introdu	ıction	
3-0	SLO-2	Complexity – Tin	lexity – Time , Space Trade off Polynomial Arithmetic Recursion concept usir				0			Threaded Binary Tree							Shortest Path Algorithm: Algorithm					-		
67	SLO-1	D-1 Mathematical notations Cursor Based Implementation – Applications of Recursic Methodology					rsion: To	wer o	f Han		linary Sea Searching	rch Ti	ree :Co	onstru	uction,		ŀ	Hashing	g: Has	h func	tions	Introd	ductio	า
S-7	SLO-2	Asymptotic notat	tions-Big O, Omega	Cursor Based Imp	blementation	Queue ADT		Binary Search Tree : Insertion and Deletion Hashing: Hash functions					tions											
S-8	SLO-1	Asymptotic notat	tions - Theta	Circular Linked Lis	st	Queue Implementation	on using	array	rray AVL Trees: Rotations Hashing : Collision avoidance					nce										

	SLO-2	Mathematical functions	Circular Linked List - Implementation	Queue Implementation using Linked List	AVL Tree: Insertions	Hashing : Separate chaining
S 9-10	SLO-1	Lab 2: Implementation of sorting Techniques – Insertion sort and Bubble	Lab 5: Implementation of Linked List - Cursor Based Implementation	Lab 8: Implementation of Queue using Array and linked list	Lab 11: Implementation of BST using linked list	Lab 14 :Implementation of Shortest path Algorithm
9-10	SLO-2	Sort Techniques	· · · · · · · · · · · · · · · · · · ·			
S-11	SLO-1	Data Structures and its Types	Applications of Circular List -Joseph Problem	Circular Queue	B-Trees Constructions	Open Addressing
3-11	SLO-2	Linear and Non-Linear Data Structures	Doubly Linked List	Implementation of Circular Queue	B-Trees Search	Linear Probing
• • •	SLO-1	1D, 2D Array Initialization using Pointers	Doubly Linked List Insertion	Applications of Queue	B-Trees Deletions	Quadratic probing
S-12	SLO-2	1D, 2D Array Accessing using Pointers	Doubly Linked List Insertion variations	Double ended queue	Splay Trees	Double Hashing
0.40	SLO-1	Declaring Structure and accessing	Doubly Linked List Deletion	Priority Queue	Red Black Trees	Rehashing
S-13	SLO-2	Declaring Arrays of Structures and accessing	Doubly Linked List Search	Priority Queue - Applications	Red Black Trees Insertion	Extensible Hashing
S 14-15	SLO-1 SLO-2	Lab 3: Implement Structures using Pointers	Lab 6: Implementation of Doubly linked List	Lab 9: Applications of Stack, Queue	Lab 12:Implementation of B-Trees	Lab 15 :Implementation of Minimal Spanning Tree

 1. Seymour Lipschutz, Data Structures with C, McGraw Hill, 2014

 Learning

 Resources

 3. A.V.Aho, J.E Hopcroft, J.D.Ullman, Data structures and Algorithms, Pearson Education, 2003

 4. Mark Allen Weiss, Data Structures and Algorithm Analysis in C, 2nd ed., Pearson Education, 2015

5. Reema Thareja, Data Structures Using C, 1st ed., Oxford Higher Education, 2011

 Thomas H Cormen, Charles E Leiserson, Ronald L Revest, Clifford Stein, Introduction to Algorithms 3rd ed., The MIT Press Cambridge, 2014

Learning Ass	essment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weigl	htage)			Einal Examinatio	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	l (10%)#		in (50% weightage)
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level I	Understand	2070	20%	1370	1370	1370	1370	1370	1570	1370	1370
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level Z	Analyze	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
Level 3	Create	1070	1070	1370	1370	1370	1370	1370	1370	1370	1370
	Total	100	0 %	10	0 %	100	0%	10	0 %	10	0 %

Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Nagaveer, CEO, Campus Corporate Connect, nagaveer@campuscorporateconnect.com	1. Dr. Srinivasa Rao Bakshi, IITM, Chennai, sbakshi@iitm.ac.in	1. Mr. K. Venkatesh, SRMIST
2. Dr. Sricharan Srinivasan, Wipro Technologies, sricharanms@gmail.com	2. Dr. Ramesh Babu, N , nrbabu@iitm.ac.in	2. Dr.Subalalitha C.N, SRMIST
	3. Dr.Noor Mahammad, IIITDM, Kancheepuram, noor@iiitdm.ac.in	3. Ms. Ferni Ukrit, SRMIST

Course Code	18CSC202J	Course Name	OBJECT ORIENTED DESIGN	AND PROGRAMMING	Course Category	С	Professional Core	L 3	T 0	P 2	C 4
Pre-requis Courses	ite 18CSS101J		Co-requisite Courses		Progres		18CSC207J				
Course Offe	ring Department	Compu	ter Science and Engineering	Data Book / Codes/Standards	Nil						

Course Learni	ning Rationale (CLR):	The purpose of learning this course is to:	L	earn	ing				l	Progr	ram L	earni	ing Ou	utcon	nes (F	PLO)				
CLR-1 : Utili	ilize class and build doma	in model for real-time programs	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2 : Utili	ilize method overloading a	and operator overloading for real-time application development programs										N.								
CLR-3 : Utili	ilize inline, friend and virtu	al functions and create application development programs	(mo	(%)					arch			abilit								
CLR-4 : Utili	ilize exceptional handling	and collections for real-time object oriented programming applications	loo	× (%	it (%)	dge		ent	ese			aing		Work		8				
		diagram and deployment diagram for design of applications	g (Blo	ienc	mer	wle	s.	mdo	, Re	age	ø	Sustainability		2 E		Finance	ning			
CLR-6: Crea	eate programs using obje	ct oriented approach and design methodologies for real-time application development	nking	oficiency	Attainment	Ϋ́	Analysis	velo	sign,	ŝ	Culture	∞ŏ		Team	ion	δ Έ	arni			
			Thir	5		ing		& Development	Ē	Tool	S S	neni			licat	Agt.	) Le			
Course Learni	ning Outcomes (CLO):	At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering Knowledge	Problem	Design 8	Analysis	Modern .	Society &	Environment	Ethics	Individual &	Communication	Project Mgt.	Life Long	PSO - 1	PSO - 2	PSO – 3
CLO-1 : Ider	entify the class and build o	lomain model	3	80	70	Н	Н	М	-	-	-	-	-	Н	Н	-	-	М	Н	Н
CLO-2: Con	onstruct programs using m	nethod overloading and operator overloading	3	85	75	Н	Н	Н	Н	Н	-	М	-	Н	Н	-	-	М	Н	Η
CLO-3: Crea	eate programs using inline	e, friend and virtual functions, construct programs using standard templates	3	75	70	Н	Η	М	Н	Н	-	М	-	Н	Н	-	-	М	Н	Н
CLO-4 : Con	onstruct programs using e	xceptional handling and collections	3	85	80	Н	Н	Н	-	-	-	-	-	Н	М	-	-	М	Н	Н
		gram and deployment diagram	3	85	75	Н	М	М	М	М	М	М	-	Н	Н	-	М	М	Н	Η
CLO-6 : Crea	eate programs using obje	ct oriented approach and design methodologies	3	80	70	Н	Н	M	-	-	-	-	-	Н	Н	-	-	М	Η	Η

Durati	on (hour)	15	15	15	15	15
S-1		Comparison of Procedural and Object Oriented Programming	Types of constructor (Default, Parameter)	Feature Inheritance: Single and Multiple	Generic - Templates : Introduction	STL: Containers: Sequence and
• •	SLO-2	OOPS and its features	Static constructor and copy constructor	Inheritance: Multilevel	Function templates	Associative Container
S-2		I/O Operations, Data Types, Variables, static	Feature Polymorphism: Constructor overloading	Inheritance: Hierarchical	Example programs Function templates	Sequence Container: Vector, List
5-2	SLO-2	Constants, Pointers, Type Conversions	Method Overloading	Inheritance: Hybrid	Class Templates	Sequence Container: Deque, Array
	SLO-1	Features: Class and Objects	Example for method overloading		Class Templates	
S-3	SLO-2	UML Diagrams Introduction	Method Overloading: Different parameter with different return values	Inheritance: Example Programs	Example programs for Class and Function templates	STL : Stack
S 4-5	SLO-1 SLO-2	Lab 1: I/O operations	Lab 4: Constructor and Method overloading	Lab 7: Inheritance and its types	Lab 10: Templates	Lab 13: STL Containers
	SLO-1	Feature :Class and Objects	Operator Overloading and types	Advanced Functions: Inline, Friend	Exceptional Handling: try and catch	
S-6	SLO-2	Examples of Class and Objects	Overloading Assignment Operator	Advanced Functions: Virtual, Overriding	Exceptional Handling: Multilevel exceptional	Associative Containers: Map, Multimap
0.7	SLO-1	UML Class Diagram and its components	Overloading Unary Operators	Advanced Function: Pure Virtual function	Exceptional Handling: throw and throws	Iterator and Specialized iterator
S-7	SLO-2	Class Diagram relations and Multiplicity	Example for Unary Operator overloading	Example for Virtual and pure virtual function	Exceptional Handling: finally	Functions of iterator
S-8	SLO-1	Feature Abstraction and Encapsulation	Overloading Binary Operators	Abstract class and Interface	Exceptional Handling: User defined exceptional	Algorithms: find(), count(), sort()
3-0		Application of Abstraction and Encapsulation	Example for Binary Operator overloading	Example Program	Example Programs using C++	Algorithms: search(), merge()

S 9-10		Lab 2: Classes and Objects, Class Diagram	Lab 5: Polymorphism : Operators Overloading	Lab 8: Virtual Function and Abstract class	Lob 11: Excontional Handling	Lab 15: STL Associative containers and algorithms
0.44	SLO-1	Access specifiers – public, private	UML Interaction Diagrams	UML State Chart Diagram	Dynamic Modeling: Package Diagram	Function Object : for_each(), transform()
S-11	SLO-2	Access specifiers - protected, friend, inline	Sequence Diagram	UML State Chart Diagram	UML Component Diagram	Example for Algorithms
S-12	SLO-1	UML use case Diagram, use case, Scenario	Collaboration Diagram	Example State Chart Diagram	UML Component Diagram	Streams and Files: Introduction
3-12	SLO-2	Use case Diagram objects and relations	Example Diagram	UML Activity Diagram	UML Deployment Diagram	Classes and Errors
S-13	SLO-1	Method, Constructor and Destructor	Feature: Inheritance	UML Activity Diagram	UML Deployment Diagram	Disk File Handling Reading Data and
3-13	SLO-2	Example program for constructor	Inheritance and its types	Example Activity Diagram	Example Package, Deployment, Package	Writing Data
S 14-15	SLO-1 SLO-2	Lab 3: Methods and Constructor, Usecase	Lab 6: UML Interaction Diagram		Lab12 : UML Component, Deployment, Package diagram	Lab15: Streams and File Handling

	1.	Grady Booch, Robert A. Maksimchuk, Michael W. Engle, Object-Oriented Analysis and Design with Applications,	
Learning		3 rd ed., Addison-Wesley, May 2007	1
Resources	2.	Reema Thareja, Object Oriented Programming with C++, 1st ed., Oxford University Press, 2015	
		Sourav Sahay, Object Oriented Programming with C++, 2 nd ed., Oxford University Press, 2017	(

Robert Lafore, Object-Oriented Programming in C++, 4th ed., SAMS Publishing, 2008
 Ali Bahrami, Object Oriented Systems Development", McGraw Hill, 2004

Craig Larmen, Applying UML and Patterns, 3rd ed., Prentice Hall, 2004

Learning Asses	sment													
	Bloom's		Final Examination	n (50% weightage)										
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#		r (50% weightage)			
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%			
Lever	Understand	20%	20%	1370	1370	1370	1370	1370	1570	1370	1370			
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%			
Leverz	Analyze	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070			
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%			
Levers	Create	1070	1070	1370	1370	1370	1370	1370	1370	1370	1370			
	Total	100	) %	10	0 %	100	) %	10	0%	100 %				

# CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc # For the laboratory component the students are advised to take an application and apply the concepts

Course Designers	ts from Industry       Experts from Higher Technical Institutions         irish Raghavan, Senior DMTS Member, Wipro Ltd.       1. Dr. Srinivasa Rao Bakshi, IITM Chennai, sbakshi@iitm.ac.in		
perts from Industry       Experts from Higher Technical Institutions         c Girish Raghavan, Senior DMTS Member, Wipro Ltd.       1. Dr. Srinivasa Rao Bakshi, IITM Chennai, sbakshi@iitm.ac.in		Internal Experts	
Mr. Girish Raghavan, Senior DMTS Member, Wipro Ltd.	1. Dr. Srinivasa Rao Bakshi, IITM Chennai, sbakshi@iitm.ac.in	1. Ms. C.G.Anupama, SRMIST	
Ms. Thamilchelvi, Solutions Architect, Wipro Ltd	2. Dr. Ramesh Babu, N, IITM Chennai, nrbabu@iitm.ac.in	2. Mr. C.Arun, SRMIST	
		3. Mr. Geogen George, SRMIST	
		4. Mr. Muthukumaran, SRMIST	

Course Code	iode     18CSC203J     Name     COMPUTER ORGANIZATION AND ARCHITECTURE				urse gory	,	С				Proi	fessio	nal C	ore					L 3	•	P 2	C 4
Pre-requ Cours	es ^{INII}		Co-requisite Courses		Cc	gress ourse		8CSC20	7J													
Course Of	fering Department	Compu	ter Science and Engineering Data Book / Codes/Standards	Λ	Vil																	
Course Le	arning Rationale (CL	R): The pur	pose of learning this course is to:		Le	earnir	ıg					Progr	ram L	earni	ing O	utcor	nes (	PLO)				
CLR-1 :	Utilize the functional u	nits of a comp	uter		1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
			Inits like adders, multipliers etc. ng and basic processing units		)						ch			oility								
			performance considerations.		(Bloom)	<i>(</i> %)	Attainment (%)	dge		ent	Research			Sustainability		Work		e				
CLR-5 :	Have a detailed study	on Input-Outp	ut organization and Memory Systems.		g (BI	enci	nen	wle	s	bmd	, Re	age	Ð	Sust		× ¤		Finance	ĝ			
CLR-6 :	Simulate simple funda	mental units	like half adder, full adder etc		Thinking	Proficiency (	ttain	Хno	alysi	Development	Design,	I Usi	Culture	t & S		Team	tion	∞ŏ	Learning			
		-	end of this course, learners will be able to:		Level of Thi	Expected Pr	Expected	Engineering Knowledge	Problem Analysis	Design & De	Analysis, De	Modern Tool Usage	Society & C	Environment &	Ethics	Individual &	Communication	Project Mgt.	Life Long Le	PSO - 1	PSO - 2	PSO – 3
CLO-1 :	Identify the computer I	nardware and	how software interacts with computer hardware		2	80	70	Н	Н	-	-	-	-	-	-	М	L	-	М	-	-	-
			designing computer logic, through simple combinational and sequential logic cir	cuits	3	85	75	Н	Н	Н	-	Н	-	-	-	Μ	L	-	М	-	-	-
			sic Processing units and the performance of Pipelining		2	75	70	Н	Н	Н	Н	-	-	-	-	М	L	-	М	-	-	-
			I multi-core processors.		3	85	80	Н	-	-	Н	-	-	-	-	М	L	-	М	-	-	-
			put-output systems and evaluate the performance of memory system		3	85	75	Н	-	Н	Н	-	-	-	-	Μ	L	-	М	-	-	-
CLO-6 :	Identify the computer I	ardware, soft	ware and its interactions		3	85	75	Н	Н	Н	Н	Н	-	-	-	М	L	-	М	-	-	-

	ration nour)	15	15	15	15	15
S-1	SLO-1	Functional Units of a computer	Addition and subtraction of Signed numbers	Fundamental concepts of basic processing unit	Parallelism	Memory systems -Basic Concepts
0-1	SLO-2	Operational concepts	Problem solving	Performing ALU operation	Need, types of Parallelism	Memory hierarchy
S-2	SLO-1	is structures Design of fast adders Execution of complete instruction		Execution of complete instruction, Branch instruction	applications of Parallelism	Memory technologies
3-2	SLO-2	Memory locations and addresses	Ripple carry adder and Carry look ahead adder	Multiple bus organization	Parallelism in Software	RAM, Semiconductor RAM
S-3	SLO-1	Memory operations	Multiplication of positive numbers	Hardwired control	Instruction level parallelism	ROM, Types
	SLO-2	Memory operations	Problem Solving	Generation of control signals	Data level parallelism	Speed,size cost
S	SLO-1	Lab 1: To recognize various components of PC- Input Output systems	Lab4:Study of TASM	Lab-7: Design of Half Adder	Lab-10: Study of Array Multiplier	Lab-13: Study of Carry Save Multiplication Program to carry out Carry Save
4-5	SLO-2	Processing and Memory units	Addition and Subtraction of 8-bit number	Design of Full Adder	Design of Array Multiplier	Multiplication
	SLO-1	Instructions, Instruction sequencing	Signed operand multiplication	Micro-programmed control-	Challenges in parallel processing	Cache memory
S-6 <b>SLO-2</b>	Addressing modes	Problem solving	Microinstruction	Architectures of Parallel Systems - Flynn's classification	Mapping Functions	
S-7	SLO-1	Problem solving	Fast multiplication- Bit pair recoding of Multipliers	Micro-program Sequencing	SISD,SIMD	Replacement Algorithms

SRM Institute of Science & Technology – Academic Curricula (2018 Regulations) - Control copy  $190\,$ 

	SLO-2	Introduction to Microprocessor	Problem Solving	Micro instruction with Next address field	MIMD, MISD	Problem Solving
	SLO-1	Introduction to Assembly language	Carry Save Addition of summands	Basic concepts of pipelining	Hardware multithreading	Virtual Memory
S-8	SLO-2	Writing of assembly language programming	Problem Solving	Pipeline Performance	Coarse Grain parallelism, Fine Grain parallelism	Performance considerations of various memories
S 9-10		Lab-2:To understand how different components of PC are connected to work properly	Lab 5: Addition of 16-bit number Subtraction of 16-bit number	Lab-8: Study of Ripple Carry Adder Design of Ripple Carry Adder	Lab-11: Study of Booth Algorithm	Lab-14: Understanding Processing unit Design of primitive processing unit
	SLO-2	Assembling of System Components				
0.44	SLO-1	ARM Processor: The thumb instruction set	Integer division – Restoring Division	Pipeline Hazards-Data hazards	Uni-processor and Multiprocessors	Input Output Organization
S-11	SLO-2	Processor and CPU cores	Solving Problems	Methods to overcome Data hazards	Multi-core processors	Need for Input output devices
0.40	SLO-1	Instruction Encoding format	Non Restoring Division	Instruction Hazards	Multi-core processors	Memory mapped IO
S-12	SLO-2	Memory load and Store instruction in ARM	Solving Problems	Hazards on conditional and Unconditional Branching	Memory in Multiprocessor Systems	Program controlled IO
S-13		Basics of IO operations.	Floating point numbers and operations	Control hazards	Cache Coherency in Multiprocessor Systems	Interrupts-Hardware, Enabling and Disabling Interrupts
3-13		Basics of IO operations.	Solving Problems	Influence of hazards on instruction sets	MESI protocol for Multiprocessor Systems	Handling multiple Devices
	SLO-1	Lab -3To understand how different				
S 14-15	SLO-2	components of PC are connected to work properly Disassembling of System Components	Lab-6: Multiplication of 8-bit number Factorial of a given number		Lab-12: Program to carry out Booth Algorithm	Lab-15: Understanding Pipeline concepts Design of basic pipeline.

		Carl Hamacher, ZvonkoVranesic, SafwatZaky, Computer Organization, 5th ed., McGraw-Hill, 2015		William Stallings, Computer Organization and Architecture – Designing for Performance, 10th ed.,	
Learning	2.	Kai Hwang, Faye A. Briggs, Computer Architecture and Parallel Processing", 3 rd ed., McGraw Hill, 2016		Pearson Education, 2015	
Resources	З.	Ghosh T. K., Computer Organization and Architecture, 3rd ed., Tata McGraw-Hill, 2011	6.	David A. Patterson and John L. Hennessy Computer Organization and Design - A Hardware software	
	4.	P. Hayes, Computer Architecture and Organization, 3rd ed., McGraw Hill, 2015.		interface, 5 th ed., Morgan Kaufmann,2014	

	Bloom's Continuous Learning Assessment (50% weightage)											
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA – 3	3 (15%)	CLA – 4	(10%)#		n (50% weightage)	
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%	
Total		otal 100 %		100 %		100	) %	100	)%	100 %		

Course Designers									
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts							
1. T. V. Sankar, HCL Technologies Ltd, Chennai, sankar_t@hcl.com	1. Prof. A.P. Shanthi, ANNA University Chennai, a.p.shanthi@cs.annauniv.edu	1.Dr. V. Ganapathy, SRMIST							
		2. Dr. C. Malathy, SRMIST							
		3. Mrs M.S.Abirami, SRMIST							

Course Code	18CSC204J	Course		DESIGN AND A	NALYSIS O	F ALGORITHMS	Course	С		Professional Core	L	Т	Р	С
Code		Name					Category				3	0	2	4
Pre-requisite				Co-requisite			Pro	aressive						
Courses	18CSC201J, 18	BCSC202J		Courses	18CSC207.	J		ourses	Nil					
Course Offerin	g Department	Comput	er Science and	Engineering		Data Book / Codes/Standards	Nil							

Course L	se Learning Rationale (CLR): The purpose of learning this course is to: Learning Program Learning Outcomes (PL			PLO)	_0)														
CLR-1 :	Design efficient algorithms in solving complex real time problems	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14 1	5
CLR-2 :											~								
CLR-3 :				-				arch			bilit								
CLR-4 :	Utilize back tracking and branch and bound paradigms to solve exponential time problems	loo	y (%)	t (%)	dge		ent	Rese			aina		Work		9				
CLR-5 :	Analyze the need of approximation and randomization algorithms, utilize the importance Non polynomial algorithms	B	enc	nen	wle	s	mdo	, Re	age	Ð	Sustainability		≥ E		Finance	g			
CLR-6 :	Construct algorithms that are efficient in space and time complexities	hinking (Bloom)	Proficiency	Attainment	Kno	Analysis	Development	Design, I	Tool Usage	Culture	∞ŏ		Team	ion	& T	aming			
		Thi:	E P		ing	Ana	& De	B	Tool	& CL	nent		ంగ	licat	Mgt.	) Le			
Course L	earning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering Knowledge	Problem	Design 8	Analysis,	Modern .	Society 8	Environment	Ethics	Individual	Communication	Project N	Life Long	PS0-1	PSO-2	1
CLO-1 :	Apply efficient algorithms to reduce space and time complexity of both recurrent and non-recurrent relations	3	80	70	L	Н	-	Н	L	-	-	-	L	L	-	Н	-		
CLO-2 :	Solve problems using divide and conquer approaches	3	85	75	М	Н	L	М	L	-	-	-	М	L	-	Н	-		
CLO-3 :	Apply greedy and dynamic programming types techniques to solve polynomial time problems.	3	75	70	М	Н	М	Н	L	-	-	-	М	L	-	Н	-		
CLO-4 :	Create exponential problems using backtracking and branch and bound approaches.	3	85	80	М	Н	М	Н	L	-	-	-	М	L	-	Н	-		
CLO-5 :	$\mathbf{J}_{\mathbf{r}}$			75	Н	Н	М	Н	L	-	-	-	М	L	-	Н	-		
CLO-6 :	Create algorithms that are efficient in space and time complexities by using divide conquer, greedy, backtracking techniqu			70	L	Н	М	Η	L	-	-	-	L	L	-	Н	-		

Duratio	on (hour)	15	15	15	15	15
	SLO-1	Introduction-Algorithm Design	Introduction-Livide and Conduer		Introduction to backtracking - branch and bound	Introduction to randomization and approximation algorithm
S-1	SLO-2	Fundamentals of Algorithms	Maximum Subarray Problem	Examples of problems that can be solved by using greedy and dynamic approach	N queen's problem - backtracking	Randomized hiring problem
	SLO-1	Correctness of algorithm	Binary Search	Huffman coding using greedy approach	Sum of subsets using backtracking	Randomized quick sort
S-2	SLO-2	Time complexity analysis	Complexity of binary search	Comparison of brute force and Huffman method of encoding	Complexity calculation of sum of subsets	Complexity analysis
S-3	SLO-1	Insertion sort-Line count, Operation count	Merge sort	Knapsack problem using greedy approach	Graph introduction	String matching algorithm
	SLO-2	Algorithm Design paradigms	Time complexity analysis	Complexity derivation of knapsack using greedy	Hamiltonian circuit - backtracking	Examples
S 4-5	SLO-1 SLO-2	Lab 1: Simple Algorithm-Insertion sort	Lab 4: Quicksort, Binary search	Lab 7: Huffman coding, knapsack and using greedy	Lab 10: N queen's problem	Lab 13: Randomized quick sort
	SLO-1	Designing an algorithm	Quick sort and its Time complexity analysis	Tree traversals	Branch and bound - Knapsack problem	Rabin Karp algorithm for string matching
S-6	SLO-2	And its analysis-Best, Worst and Average case	Best case, Worst case, Average case analysis	Minimum spanning tree - greedy Kruskal's algorithm - greedy	Example and complexity calculation. Differentiate with dynamic and greedy	Example discussion
S-7	SLO-1	Asymptotic notations Based on growth functions.	Strassen's Matrix multiplication and its recurrence relation	Minimum spanning tree - Prims algorithm	Travelling salesman problem using branch and bound	Approximation algorithm
0-1	SLO-2	0,0,θ, ω, Ω	Time complexity analysis of Merge sort	Introduction to dynamic programming	Travelling salesman problem using branch and bound example	Vertex covering

S-8	SLO-1	Mathematical analysis	Largest sub-array sum	0/1 knapsack problem	Travelling salesman problem using branch and bound example	Introduction Complexity classes
3-0	SLO-2	Induction, Recurrence relations	Time complexity analysis of Largest sub- array sum	Complexity calculation of knapsack problem	Time complexity calculation with an example	P type problems
S 9-10	SLO-1 SLO-2	Lab 2: Bubble Sort	Lab 5: Strassen Matrix multiplication Lab 8: Various tree traversals, Krukshall's MST		Lab 11: Travelling salesman problem	Lab 14: String matching algorithms
S-11	SLO-1	Solution of recurrence relations	Master Theorem Proof	Matrix chain multiplication using dynamic programming	Graph algorithms	Introduction to NP type problems
0-11	SLO-2	Substitution method	Master theorem examples	Complexity of matrix chain multiplication	Depth first search and Breadth first search	Hamiltonian cycle problem
S-12	SLO-1	Solution of recurrence relations	Finding Maximum and Minimum in an array	Longest common subsequence using dynamic programming	Shortest path introduction	NP complete problem introduction
•	SLO-2	Recursion tree	Time complexity analysis-Examples	Explanation of LCS with an example	Floyd-Warshall Introduction	Satisfiability problem
S-13	SLO-1	Solution of recurrence relations	Algorithm for finding closest pair problem	Optimal binary search tree (OBST)using dynamic programming	Floyd-Warshall with sample graph	NP hard problems
	SLO-2	Examples	Convex Hull problem	Explanation of OBST with an example.	Floyd-Warshall complexity	Examples
S 14-15			Lab 6: Finding Maximum and Minimum in an array, Convex Hull problem	Lab 9: Longest common subsequence	Lab 12: BFS and DFS implementation with array	Lab 15: Discussion over analyzing a real time problem

	Learning	1.	Thomas H Cormen, Charles E Leiserson, Ronald L Revest, Clifford Stein, Introduction to Algorithms, 3rd ed., The	3.	Ellis Horowitz, Sartajsahni, Sanguthevar, Rajesekaran, Fundamentals of Computer
			MIT Press Cambridge, 2014		Algorithms, Galgotia Publication, 2010
ľ	Resources	2.	Mark Allen Weiss, Data Structures and Algorithm Analysis in C, 2 nd ed., Pearson Education, 2006	4.	S. Sridhar, Design and Analysis of Algorithms, Oxford University Press, 2015

Learning Asses	sment											
	Bloom's			- Final Examination (50% weightage)								
	Level of Thinking	CLA –	1 (10%)	CLA – 2 (15%)		CLA – 3 (15%)		CLA – 4	(10%)#	Final Examination (50% weightage)		
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
LOVOI I	Understand	2070	2070	1070	1070	1070	1070	1070	1070	1070	1070	
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Level 3	Evaluate	10%	10%	1450/	15%	15%	15%	15%	15%	15%	15%	
	Create (75%											
	Total	10	0 %	100 % 100 %		)%	10	0 %	100 %			

Course Designers									
Experts from Industry Experts from Higher Technical Institutions Internal Experts									
1. G. Venkiteswaran, Wipro Technologies, gvenki@pilani.bits-pilani.ac.in	1. Mitesh Khapra, IITM Chennai, miteshk@cse.iitm.ac.in	1. Mr.K.Senthil Kumar, SRMIST							
2. Dr.Sainarayanan Gopalakrishnan, HCL Technologies, sai.jgk@gmail.com	2. V. Masilamani. IIITDM, masila@iiitdm.ac.in	2. Dr.A.Razia Sulthana, SRMIST							
		3. Mr. V. Sivakumar, SRMIST							
		4. Ms. R. Vidhya, SRMIST							

Cour Cod		18CSC205J	Course Name		OPE	RATING SYSTEMS		-	ourse tegory		С				Pro	fessio	nal Co	ore					L 3		Р С 2 4
	equisite urses	Nil			Co-requisite Courses	Nil				gressi ourses		Vil													
Course	Offering	Department	Compute	er Science and	d Engineering	Data Book	/ Codes/Standards		Nil																
	•	g Rationale (CL			g this course is to:				L	earnin	ıg					Progr	am L	earni	ng Ou						
		uce the key role							1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14 1
CLR-2		the Process Mar asize the import			erating system nt concepts of an C	Operating system									ch			oility							
CLR-4	: Realiz	e the significand	ce of Device Ma	anagement par	rt of an Operating	system			moo	y (%)	t (%)	action	þ	ent	sear			ainat		/ork		B			
CLR-5					ns of an Operating	y system			g (B	cienc	men	dwo	.9	opm	n, Re	sage	e	Sust		M N		linan	ing		
CLR-6	R-6: Explore the services offered by the Operating system practically								inkir	Profic	Attair	, Ku	nalys	Jevel	esig	i Uŝ	Cultu	nt &		& Te	ation	t. & F	Learning		
	urse Learning Outcomes (CLO): At the end of this course, learners will be able to: O-1: Identify the need of an Operating system								Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Encineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long	PSO - 1	PSO - 2
					anating anatom				1	80	70 75	H		Н	H	H H	М	L	М			М	Н	Н	H N
CL0-2 CL0-3		the Process main stand the need of			tions of an Operati	ina system			1	85 75	75	h h		H H	H H	н Н	M M	L	M			M M			H N H N
CLO-4	: Find th	ne significance o	of Device mana	gement role of	f an Operating sys	tem			2	85	80	h		H	H	H	М	Ĺ	M			M	H		H N
CLO-5					of an Operating sy				2	85	75	H		Н	Н	Н	М	L				М			H N
CLO-6	: Gain a	n insight of Imp	ortance of an C	Dperating syste	em through practic	al			3	80	70	H	Н	Н	Н	Н	М	L	М	Н	М	М	Н	Н	H N
Duratio	n (hour)		15			15		15						15								15			
	SLO-1	Operating Syste	em Objectives a	and functions	PROCESS SYNCH Peterson's solution Hardware		MEMORY MANAGEI Management: Logica space, Swapping				ess V	IRTUAL	MEMO	DRY-I	Backg	ground	1	1	STOR/ Mass s Mass s	torag	ie stru	ucture	e – Ov	rviev	v of : Disks
S-1	SLO-2	Gaining the role	of Operating s	ystems a		two-process solution the synchronization	Understanding the ba management	asics o	f Mem	ory		Inderstai aging	nding ti	he nee	d of	demai	nd		Unders manag			e Bas	sics in	stora	ge
	3I U-I	The evolution of achievements	f operating syst		Process synchroni. usage, implementa	zation: Semaphores, ation	Contiguous Memory a Dynamic partition				p	'IRTUAL age faul			Basic	c conc	epts –	-	Disk S	chedu	uling				
S-2	SLO-2	Understanding t systems from ea systems to mod	arly batch proce	essing s rstems r	semaphores for the mechanisms	edge of the usage of the e Mutual exclusion	Getting to know abou management and is fragmentation and ex problems	sues: l	nterna	al	U	Inderstai age fauli	•	how a	ın OS	S hand	lles th		Unders respec		•		ious s	chedu	ling wit
	SLO-1 OS Design considerations for Multiprocessor and Multicore Droblems of synchronization – Readers writers problem, Bounded Buffer problem						Strategies for selectir Dynamic partition	ng free	holes	in	P	erforma	nce of	Demar	nd pa	ging			FILE S File ac				FACE	: File d	concep
S-3	SLO-2 Multiprocessor Operating systems and Multicore Operating systems						Understanding the all with examples	locatio	n strat	egies		Inderstai ccess tir						ive (	Unders	tand	ing th	e file	basic	S	
S 4-5		LAB 1 : Underst of Linux	anding the boo	ting process	LAB4 : System admin commands – Basics LAB7: Shell Progr				sic lev	el	L	AB10 : C	Verlay	conce	pt			l	LAB13	:Proc	ess s	synchi	roniza	tion	
S-6	SLO-1	0-1 PROCESS CONCEPT– Processes, PCB Classical Problems of synchronizatio Dining Philosophers problem (Monito					Paged memory mana	agemei	nt		С	opy-on	vrite					1	File sh	aring	and I	Proteo	ction		
	SLO-2	Understanding t	the Process cor	ncept and	Understanding the	synchronization of	Understanding the Pa	aging t	echniq	ue.PN	IT U	Indersta	nding ti	he nee	d for	Сору-	on wr	ite I	Empha	sis th	ne nee	ed fo	r the f	ile sha	aring ar

SRM Institute of Science & Technology – Academic Curricula (2018 Regulations) - Control copy  $194\,$ 

		Maintanance of PCB	by OS	limited resources processes	among multiple	hardware me	echanism					its protection	
S-7	SLO-1	Threads – Overview a	nd its Benefits	CPU SCHEDULI	NG : FCFS,SJF,Priority	Structure of	Page Map Table		Optimal, LF Techniques		roximation	FILE SYSTEM IMPLEI system structure	MENTATION : File
	SLO-2	Understanding the imp	oortance of threads	Understanding th	e scheduling techniques	Understandii	ng the components c	of PMT		ling the Pros and cement techniqu		To get the basic file sys	stem structure
S-8	SLO-1	Process Scheduling : Schedulers, Context s	•	0	Round robin, Multilevel g, Multilevel feedback	Example : In Architectures	tel 32 bit and 64 –bit s	t	Ŭ	ased page repla ring Algorithms	cement and	Directory Implementati	on
	SLO-2	Understanding basics scheduling	of Process	Understanding th	e scheduling techniques	Understandii architectures	ng the Paging in the	Intel		n additional Tech or page replacen	,	Understanding the vari directory structure	ous levels of
S 9-10	SLO-1 SLO-2	LAB2 : Understanding	the Linux file system	LAB5: System ac task automations	lmin commands – Simple	LAB 8: Proce	ess Creation		LAB11: IPC	Cusing Pipes		LAB14 : Study of OS16	51
6.44	SLO-1	Operations on Proces Process termination	s – Process creation,		uling: Rate Monotonic Deadline Scheduling	Example : Al	RM Architectures		Allocation of Allocation	of Frames - Glob	al Vs Local	FILE SYSTEM IMPLEMENTATION :A	llocation methods
S-11	SLO-2	Understanding the sys fork(),wait(),exit()	tem calls –	-	e real time scheduling	Understandii ARM	ng the Paging with re	espect to	Understand Thrashing	ling the root cau	se of the	Understanding the pros various disk allocation	s and Cons of
SLO-1		Inter Process commur Memory, Message Pa			ecessary conditions, ion graph, Deadlock ods	Segmented i	memory managemer	nt	Thrashing,	Causes of Thras	shing	FILE SYSTEM IMPLEI space Management	MENTATION :Free
-	SLO-2	Understanding the nee	ed for IPC	Understanding th	e deadlock scenario		ng the users view of to the primary memo		Understand	ding the Thrashir	ng	Understanding the met maintaining the free sp	
S-13	SLO-1	PROCESS SYNCHRO Background, Critical s		Deadlocks :Dead and Recovery	lock Avoidance, Detection	Paged segm	entation Technique		Working se	t Model		Swap space Managem	ent
3-13	SLO-2	Understanding the rac need for the Process s		-	e deadlock avoidance, overy mechanisms	Understandii efficient man	ng the combined sch agement	neme for		ling the working the Working set		Understanding the Low OS	v-level task of the
S 14-15	SLO-1 SLO-2	LAB3: Understanding of Compilation of a 'C'		LAB6 : Linux con	nmands	LAB9: Overla	ay concept		LAB12: IPC Message q	C using shared n ueues	nemory and	LAB15 : Understanding filesystem and working	•
Learni Resou	•				Operating systems, 9 th ed gn Principles, 7 th ed., Prer							erating systems, 4 th ed., I mer's Perspective, Pears	
Learni	ng Asses	sment											
		Bloom's	CLA – 1 (	(100/)	Continuous CLA – 2 (15%		essment (50% weigh CLA – 3				(10%)#	Final Examination	n (50% weightage)
		Level of Thinking	Theory	Practice		Practice	Theory	Pract	tice	Theory	Practice	Theory	Practice
Level 1		Remember Understand	20%	20%	15%	15%	15%	15%		15%	15%	15%	15%
Level 2		Apply Analyze	20%	20%	20%	20%	20%	20%	%	20%	20%	20%	20%
Level 3		Evaluate Create	10%	10%	15%	15%	15%	15%	%	15%	15%	15%	15%
		Total	100 9	6	100 %		100	) %		10	0 %	10	0 %
Course	e Designe	ers											
	from Ind		Experts	from Higher Tech	nical Institutions			Inte	ernal Experts	6			
1. Mr. I	Balamuru	gan, Infosys, balams@	gmail.com 1. Dr. La	atha Parthiban, Po	ndicherry University, latha	parthiban@ya	nhoo.com	1. L	Dr.G.Maraga	atham, SRMIST		3. Ms. Aruna S, SRMIS	T
								2. 1	Mr. Eliazer N	I, SRMIST			
			I					1					

Course Code	18CSC206J	Course Name	SOFTWARE ENGINEER	RING AND PROJECT MANAGEMENT	Course Category	С	Professional Core	L 3	Т 0	P 2	C 4
Pre-requisi Courses	Nil		Co-requisite Courses	Nil	Progre Cour	NII	· · · · · · · · · · · · · · · · · · ·				
Course Offer	ring Department	Comput	er Science and Engineering	Data Book / Codes/Standards	Nil						

Course Lo	earning Rationale (CLR): The purpose of learning this course is to:	L	.earni	ng					I	Progr	ram L	earn	ing O	utcor	nes (F	PLO)			
CLR-1 :	Familiarize the software life cycle models and software development process	1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14 15
CLR-2 :				()															
CLR-3 :	R-3: Examine basic methodologies for software design, development, testing, closure and implementation			nt (%)		dge		ment						Vork		ce			
CLR-4 :	Understand manage users expectations and the software development team	g (Blo	enc			owle	sis	mdc	ć	age	e			۲ ۲		Finan	ning		
CLR-5 :	Acquire the latest industry knowledge, tools and comply to the latest global standards for project management	Thinking	Proficiency	Attainme		Kno	alysi	svelopi	sign,	ool Usage	Cultur	د د &		Tear	tion	~ð	arni		
		Ц Ц	P	d At		ring	Analy	& De	P G	H 1	വ് യ	nen. bilit		8	ica	Mgt.	g Le		
Course Lo	earning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expecter		Engineering Knowledge	Problem	Design 8	Analysis, Researcl	Modern	Society &	Environment 8 Sustainability	Ethics	Individual	Communication	Project N	Life Long	PSO - 1	PSO - 2 PSO - 3
CLO-1 :	Identify the process of project life cycle model and process	1	85	80		Н	Н	L	-	-	-	L	-	Н	Н	М	М	-	
CLO-2 :	Analyze and specify software requirements through a productive working Relationship with project stakeholders	2	80	75		Н	Н	Н	Н	Н	-	М	-	Н	Н	H-	М	-	
CLO-3 :	Design the system based on Functional Oriented and Object Oriented Approach for Software Design.	3	85	85		Н	Н	М	Н	Н	М	М	L	Н	Н	М	-	-	
CLO-4 :				85		Н	Н	Н	-	Н	-	-	М	Н	М	Н	-	-	
CLO-5 :	: Perform by applying the test plan and various testing techniques			75	]	Н	М	М	М	М	М	М	-	Н	Н	-	М	-	

Durati	on (hour)	15	15	15	15	15
• •	SLO-1	Introduction to Software Engineering	Software Design - Software Design Fundamentals	Software Construction	Introduction to testing	Product Release
S-1	SLO-2	Software Project Management - life cycle activities	Design Standards - Design Type	Coding Standards	Verification	Product Release
S-2	SLO-1	Traditional – Waterfall, V Model	Design model – Architectural design, Software architecture	Coding Framework	Validation	Product Release Management
	SLO-2	Prototype, Spiral, RAD	Software Design Methods	Reviews - Desk checks (Peer Reviews)	Test Strategy	Product Release Management
S-3	SLO-1	Conventional – Agile,	Top Down , Bottom Up	Walkthroughs	Planning	Implementation
3-3	SLO-2	XP, Scrum	Module Division (Refactoring)	Code Reviews, Inspections	Example: Test Strategy and Planning	Implementation
s	SLO-1	Lab1:Identify the Software Project, Create	Lab 4:Prepare Project Plan based on	Lab 7:State and Sequence Diagram,	Lab 10: Module Implementation (Phase 2),	
4-5	SLO-2	Business Case, Arrive at a Problem Statement	scope, Find Job roles and responsibilities, Calculate Project effort based on resources	Deployment Diagram, Sample Frontend Design (UI/UX)	Scrum Master to Induce New Issues in Agile Development	Lab 13:Manual Testing
S-6	SLO-1	Introduction to Requirement Engineering	Module Coupling	Coding Methods	Test Project Monitoring and Control	User Training
3-0	SLO-2	Requirements Elicitation	Component level design	Structured Programming	Test Project Monitoring and Control	Maintenance Introduction
S-7	SLO-1	Software Project Effort and cost estimation	User Interface Design	Object-Oriented Programming	Test Project Monitoring and Control	Maintenance Types - Corrective
	SLO-2	Cost estimation	Pattern oriented design	Automatic Code Generation	Test Project Monitoring and Control	Adaptive
S-8	SLO-1	Cocomo 1 and 2	Web application design	Automatic Code Generation	Test Project Monitoring and Control	Perfective
5-8	SLO-2	Cocomo 1 and 2	Web application design	Automatic Code Generation	Test Project Monitoring and Control	Preventive
S 9-10	SLO-1 Lab 2:Stakeholder and User Descriptio	Lab 2:Stakeholder and User Description, Identify the appropriate Process Model, Comparative study with Agile Model	Lab 5:Prepare the Work, Breakdown Structure based on timelines, Risk Identification and Plan	Lab 8:Module Description, Module Implementation (phase 1) Using Agile	Lab 11:Module Implementation (Phase 3) Scrum Master to Induce New requirements in Agile Development, Scrum Master to Induce New Issues in Agile Development, Code Documentation	Lab 14:User Manual, Analysis of Costing, Effort and Resources

S-11	SLO-1	Risk Management	Design Reuse	Software Code Reuse	Design –Master test plan, types	Maintenance Cost
3-11	SLO-2	Risk Management	Design Reuse	Software Code Reuse	Design –Master test plan, types	Maintenance Process
S-12		Configuration management	Concurrent Engineering in Software Design	Pair Programming	Test Case Management	life cycle
3-12		Configuration management	Concurrent Engineering in Software Design	Test-Driven Development	Test Case Management	Software Release
S-13	SLO-1	Project Planning – WBC, planning,	Design Life-Cycle Management	Configuration Management	Test Case Reporting	Software Maintenance
3-13	SLO-2	scope, risk	Design Life-Cycle Management	Software Construction Artifacts	Test Case Reporting	Software Release, Software Maintenance
s	SLO-2 SLO-1	Lab 3:Identify the Requirements, System	Lab 6:Design a System Architecture, Use Case Diagram, ER Diagram (Database), DFD Diagram (process) (Upto Level 1),	Lab 9:Module Implementation, Scrum	Lab 12:Master Test Plan, Test Case	Lab 15: Project Demo and Report
5 14-15	SLO-2	Requirements, Functional Requirements, Non-Functional Requirements	Class Diagram (Applied For OOPS based Project), Collaboration Diagram (Applied For OOPS based Project) (Software – Rational Rose)		Design (Phase 1)	Submission with the team

	1.	Roger S. Pressman, Software Engineering – A Practitioner Approach, 6th ed., McGraw Hill, 2005	5.	Ashfaque Ahmed, Software Project Management: a process-driven approach, Boca Raton, Fla: CRC
Learning	2.	Ian Sommerville, Software Engineering, 8th ed., Pearson Education, 2010		Press, 2012
Resources	З.	Rajib Mall, Fundamentals of Software Engineering, 4th ed., PHI Learning Private Limited, 2014	6.	Walker Royce, Software Project Management, Pearson Education, 1999
	4.	Ramesh, Gopalaswamy, Managing Global Projects, Tata McGraw Hill, 2005	7.	Jim Smith Agile Project Management: Creating Innovative Products, Pearson 2008

Learning As	sessment										
	Bloom's			Conti	inuous Learning Ass	essment (50% weig	htage)			Final Evanination	- (EOO/ weighters)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	l (10%)#	Final Examination	n (50% weightage)
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Total		0 %	10	0%	10	0 %	10	0 %	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Girish Raghavan, Wipro Technologies	1. Dr. Latha Parthiban, Pondicherry University, lathaparthiban@yahoo.com	1. Mrs. Sasi Rekha Sankar, SRMIST
2. Dr.Mariappan Vaithilingam, Amazon, Bangalore	2. V. Masilamani. IIITDM, masila@iiitdm.ac.in	2. Dr. T.S.Shiny Angel, SRMIST
		3. Mr.N.Arivazhagan, SRMIST
		4. Mrs K.R.Jansi, SRMIST

Course	18CSC207J	Course			ING PRACTICE	Cou	ırse	C	Professional Core	L	Т	Ρ	С
Code	100302073	Name	ADVANCEDT			Cate	gory	U		3	0	2	4
Pre-requis	ite		Co-requisite				Progress	ive					
Courses	18CSC202J		Courses	18CSC204J	1		Course	-	Nil				
Course Offer	ring Department	Comput	ter Science and Engineering		Data Book / Codes/Standards	٨	Vil						

Course Le	earning Rationale (CLR):	The purpose of learning this course is to:	L	earniı	ng				I	Progr	am L	.earni	ing O	utcon	nes (F	PLO)				
CLR-1 :	Create Real-time Application	n Programs using structured, procedural and object oriented programming paradigms	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2 :		on Programs using event driven, declarative and imperative programming paradigms										N.								
CLR-3 :									earch			abilit								
CLR-4 :	<b>LR-4</b> : Create Real-time Application Programs using logic, dependent type and network programming paradigms				ıt (%)	dge		ent	Ū.			Sustainability		Work		ge				
CLR-5 :	Create Real-time Application	on Programs using symbolic, automata based and graphical user interface program paradigm	hinking (Bloom)	enc	men	wle	s	md	ı, Re	age	Ð	Sust		2 E		Finance	g			
CLR-6 :	<b>R-6</b> : Create Real-time Application Programs using different programming paradigms using python language			Proficiency	Attainment	Кро	Analysis	Development	Design,	Tool Usage	Culture	∞ŏ		Tea	tion	∞ŏ	arni			
			Thir	d Pr		ring		& De	Ē	<u>6</u>	å C	neni		8	licat	Mgt.	g Le			
Course Le	earning Outcomes (CLO):	At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering Knowledge	Problem	Design 8	Analysis,	Modern	Society &	Environment	Ethics	Individual	Communication	Project <b>N</b>	Life Long	PSO - 1	PSO - 2	PSO – 3
CLO-1 :	Create Programs using stru	ictured, procedural and object oriented programming paradigms	3	85	80	Н	Н	Н	Н	Н	-	-	L	М	М	L	М	-	М	-
CLO-2 :	Create Programs using eve	ent driven, declarative and imperative programming paradigms	3	85	80	Н	Н	Н	Н	Н	-	-	L	М	М	L	М	-	-	-
CLO-3 :	Create Programs using par	allel, concurrent and functional programming paradigms	3	85	80	Н	Н	Н	Н	Н	-	-	L	М	М	L	М	-	-	-
CLO-4 :			3	85	80	Н	Н	Н	Н	Н	-	-	L	М	М	L	М	-	-	-
CLO-5 :				85	80	Н	Н	Н	Н	Н	-	-	L	М	М	L	М	-	-	-
CLO-6 :				85	80	Н	Н	Н	Н	Н	-	-	L	М	М	L	М	-	-	-

Durati	ion (hour)	15	15	15	15	15
	SLO-1	Structured Programming Paradigm	Event Driven Programming Paradigm	Parallel Programming Paradigm	Logic Programming Paradigm	Symbolic Programming Paradigm
S-1	SLO-2	Programming Language Theory	Event Object, handler, bind	Multi-threading, Multi-Processing	First-class function, Higher-order function, Pure functions, Recursion	Symbolic Maths, algebraic manipulations, limits, differentiation, integration, series
S-2	SLO-1	Bohm-Jacopini structured program theorem	Keypress events, Mouse events	Serial Processing, Parallel Processing	Packages: Kanren, SymPy	SymPy usage for symbolic maths
3-2	SLO-2	Sequence, selection, decision, iteration, recursion	Automatic events from a timer	Multiprocessing module in Python	PySWIP, PyDatalog	Equation Solving, Matrices
	SLO-1	Other languages: C, C++, Java, C#, Ruby	Other languages: Algol, Javascript, Elm	Process class, Pool class	Other languages: Prolog, ROOP, Janus	Other languages: Aurora, LISP, Wolfram
S-3	SLO-2	Demo: Structured Programing in Python	Demo: Event Driven Programming in Python	Demo: Parallel Programming in Python	Demo: Logic Programming in Python	Demo: Symbolic Programming in Python
S 4-5	SLO-1 SLO-2	Lab 1: Structured Programming	Lab 4: Event Driven Programming	Lab 7: Parallel Programming	Lab 10: Logic Programming	Lab 13: Symbolic Programming
	SLO-1	Procedural Programming Paradigm	Declarative Programming Paradigm	Concurrent Programming Paradigm	Dependent Type Programming Paradigm	Automata Based Programming Paradigm
S-6	SLO-2	Routines, Subroutines, functions	Sets of declarative statements	Parallel Vs Concurrent Programming	Logic Quantifier: for all, there exists	Finite State Machine, deterministic finite automation (dfa), nfa
	SLO-1	Using Functions in Python	Object attribute, Binding behavior	threading, multiprocessing	Dependent functions, dependent pairs	State transitions using python-automaton
S-7	SLO-2	logical view, control flow of procedural programming in various aspects	Creating Events without describing flow	concurrent.futures, gevent, greenlets, celery	Relation between data and its computation	Initial state, destination state, event (transition)
	SLO-1	Other languages: Bliss, ChucK, Matlab	Other languages: Prolog, Z3, LINQ, SQL	Other languages: ANI, Plaid	Other Languages: Idris, Agda, Coq	Other languages: Forth, Ragel, SCXML
S-8	5-8 SI 0-2 De	Demo: creating routines and subroutines using functions in Python	Demo: Declarative Programming in Python	Demo: Concurrent Programming in Python	Demo: Dependent Type Programming in Python	Demo: Automata Based Programming in Python

SRM Institute of Science & Technology – Academic Curricula (2018 Regulations) - Control copy  $198\,$ 

S 9-10	SLO-1 SLO-2	Lab 2: Procedural Programming	Lab 5: Declarative Programming	Lab 8: Concurrent Programming	Lab 11: Dependent Type Programming	Lab 14: Automata Programming
	SLO-1	Object Oriented Programming Paradigm	Imperative Programming Paradigm	Functional Programming Paradigm	Network Programming Paradigm	GUI Programming Paradigm
S-11	SLO-2	Class, Objects, Instances, Methods	Program State, Instructions to change the program state	Sequence of Commands	Socket Programming: TCP & UDP Connection oriented, connectionless	Graphical User Interface (GUI)
S-12	SLO-1	Encapsulation, Data Abstraction	Combining Algorithms and Data Structures	map(), reduce(), filter(), lambda	Sock_Stream, Sock_Dgram, socket(), bind(), recvfrom(), sendto(), listen()	Tkinter, WxPython, JPython
3-12	SLO-2	Polymorphism, Inheritance	Imperative Vs Declarative Programming	partial, functools	Server-Client; send(), recv(), connect(), accept(), read(), write(), close()	WxWidgets, PyQT5
	SLO-1	Constructor, Destructor	Other languages: PHP, Ruby, Perl, Swift	Other languages: F#, Clojure, Haskell	Other languages: PowerShell, Bash, TCL	Other languages: GTK, java-gnome
S-13	SLO-2	Example Languages: BETA, Cecil, Lava Demo: OOP in Python	Demo: Imperative Programming in Python	Demo: Functional Programming in Python	Demo: Socket Programming in Python	Demo: GUI Programming in Python
S 14-15	SLO-1 SLO-2	Lab 3: Object Oriented Programming	Lab 6: Imperative Programming	Lab 9: Functional Programming	Lab 12: Network Programming	Lab 15: GUI Programming

Learning Resources	<ol> <li>Elad Shalom, A Review of Programming Paradigms throughout the History: With a suggestion Toward a Future Approach, Kindle Edition, 2018</li> <li>John Goerzen, Brandon Rhodes, Foundations of Python Network Programming: The comprehensive guide to building network applications with Python, 2nd ed., Kindle Edition, 2010</li> <li>Elliot Forbes, Learning Concurrency in Python: Build highly efficient, robust and concurrent applications, Kindle Edition, 2017</li> </ol>	<ol> <li>Amit Sana, Doing Matri With Python: Use Programming to Explore Algebra, Statistics, Calculus and More, Kindle Edition, 2015</li> <li>Alan D Moore, Python GUI Programming with Tkinter: Develop responsive and powerful GUI applications with Tkinter, Kindle Edition, 2018</li> </ol>
-----------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Learning As	sessment													
	Bloom's			Conti	nuous Learning Ass	essment (50% weigl	ntage)			Einal Examination	n (50% weightage)			
	Level of Thinking	CLA –	1 (10%)	CLA – 2	2 (15%)	CLA – S	3 (15%)	CLA – 4	(10%)#		(50% weightage)			
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%			
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%			
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%			
	Total	100 % 100 % 100 %				0 %	100	0%	100 %					

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Sagar Sahani, Amadeus Software Labs, Bangalore, hello.sagarsahni@gmail.com	1. Dr. Rajeev Sukumaran, IIT Madras, rajeev@wmail.iitm.ac.in	1. Dr. R. Annie Uthra, SRMIST
2. Mr. Janmajay Singh, Fuji Xerox R&D, Japan, janmajaysingh14@gmail.com	2. Prof. R. Golda Brunet, GCE, goldabrunet@gcessalem.edu.in	2. Dr. Christhu Raj M R, SRMIST
		3. Ms. K. Sornalakshmi, SRMIST
		4. Mr. C. Arun, SRMIST



Course Code	18EEC201J	Course Name		ANALYSIS	OF ELECTR	IC CIRCUITS	urse egory	С	Professional Core	L 3	T 0	P 2	C 4
Pre-requis Courses	186651011			Co-requisite Courses			Progre						
Course Offe	ring Department	Electrica	al and Electroni	ics Engineering		Data Book / Codes/Standards	Nil	·					

Course Learning Rationale (CLR): The purpose of learning this course is to:	L	earni	ng					Prog	ram L	earn	ing O	utcor	nes (F	PLO)				
CLR-1 : Analyze real-time circuits using mesh and nodal analysis and network reduction	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14 15	
CLR-2: Utilize solutions of AC circuits including series and parallel resonance										~								
CLR-3: Utilize network theorems on DC & AC circuits	-	_	_				arch			Sustainability								
CLR-4 : Examine circuits at transient condition	(Bloom)	(%) /	t (%)	dge		ant	sea			aina		Work		9				
CLR-5: Solve 3 phase circuits, coupled and tuned circuits	B	Proficiency	Attainment	wlea	~	bme	, Re	age	^m	usta		μ		Finance	ning			
CLR-6 : Enrich the concepts of AC and DC circuits using different analysis	hinking	oficie	ainn	Хnо	lysi	velo	Design, I	Usage	Culture	~		Team	ы	ъ В	arnir			
	Thin			ring	Analysis	& Development		Tool	& Cu	nent			licati	Mgt	Ľ			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:		Expected	Expected	Engineering Knowledge	Problem	Design 8	Analysis,	Modern ⁻	Society 8	Environment	Ethics	Individual &	Communication	Project N	Life Long	PSO-1	PSO-2 PSO-3	
Urse Learning Outcomes (CLO): At the end of this course, learners will be able to: D-1: Analyze circuit parameters, analyze circuits using mesh and nodal analysis and network reduction		75	75	Ħ	Ħ	-	-	-	-	-	-	М	М	-	-	M	M -	
SLO-2: Evaluate solution methods of AC circuits including series and parallel resonance		75	75	Η	Н	-	-	М	-	-	-	М	М	-	-	М	М -	
.0-3 : Calculate solutions of network theorems for DC and AC circuits		75	75	Н	Н	-	-	-	-	-	-	М	М	-	-	М	М -	
0-4 : Analyze the transients of RLC circuits		75	75	Н	Н	М	-	М	-	-	-	М	М	-	-	М	М -	
0-5: Analyze 3 phase circuits, coupled, tuned circuits and two port networks.		75	75	Η	Н	М	-	-	-	-	-	М	М	-	-	М	М -	
CLO-6 : Evaluate AC and DC circuits under different cases	3	75	75	Η	H	М	-	M	-	-	-	М	М	-	-	М	М -	

Durati	on (hour)	15	15	15	15	15
S-1	SLO-1	Introduction to two terminal circuit passive elements	Introduction to AC circuits		, , ,	Analysis of balanced three-phase 3 wire circuits
3-1	SLO-2	Characteristics of two terminal circuit passive elements	Phasors	Problems in Superposition theorem in DC circuits	Exponentially Decreasing functions	Problems in balanced three-phase 3 wire circuits
S-2	SLO-1	Circuit Reduction Techniques	Impedance		RL free circuits	Analysis of unbalanced three-phase circuits
5-2	SLO-2	Problems in Circuit Reduction Techniques	Admittance	Problems in Superposition theorem in AC circuits	RL Driven circuits	Problems in unbalanced three-phase circuits
S-3	SLO-1	Combination of Sources	Calculation of Power and Power Factor	Reciprocity theorems in AC circuits	Transients in RL circuit with DC excitation	Two-wattmeter method of measuring three- phase power
3-3	SLO-2	Source Transformation	Problems in Power and Power Factor	Problems in Reciprocity theorems in AC circuits	Transients in RL circuit with AC excitation	Problems in Two-wattmeter method of measuring three-phase power
S 4-5	SLO-1	Lab 1: Circuit reduction and basic laws	Lab 4: Determine Power and Power Factor	Lab 7: Verify Superposition and Reciprocity Theorems	Lab 10: Analyze Time domain of RL transient circuit	Lab 13: Measure power in 3 phase circuits
4-3	SLO-2	Mach surrant analysis of DC sizewite with				using two wattmeter method
S-6	SLO-1	Mesh current analysis of DC circuits with dependent sources	Steady state analysis of RL circuits	Thevenin's theorem in DC circuits	RC free circuits	Analysis of coupled circuits
0-0	SLO-2	Problems in Mesh current analysis of DC circuits with dependent sources	Steady state analysis of RC circuits	Norton theorem in DC circuits	RC driven circuits	Problems in coupled circuits
0.7	SLO-1	Mesh analysis in DC circuits with current sources	Steady state analysis of RLC circuits	Thevenin's theorem in AC circuits	Transients in RC circuit with DC excitation	Analysis of tuned circuits
S-7	SLO-2	Problems in Mesh analysis in DC circuits with current sources	Phasor diagram of RLC circuits	Problems in Thevenin's theorem in AC circuits	Transients in RC circuit with AC excitation	Problems in tuned circuits
S-8	SLO-1	Nodal Voltage analysis of DC circuits with dependent sources	Series resonance circuits	Norton's theorem in AC circuits	Laplace transforms	Introduction to Two port networks

	SLO-2	Problems in Nodal Voltage analysis of DC circuits with dependent sources	Problems in Series resonance circuits	Problems in Norton's theorem in AC circuits	Transform impedance	Analysis of Two port networks
S 9-10	SLO-1 SLO-2	Lab 2: Mesh analysis in DC circuits	Lab 5: Real time Data Acquisition	Lab 8: Verify Thevenin's and Norton's theorems	Lab 11: Analyze Time domain of RC transient circuit	Lab 14: Analysis in tuned circuits
		Supermesh method for mesh analysis	Parallel resonance circuits	Millman's theorem in AC circuits	Transients in RLC circuit with DC excitation	Impedance parameters
S-11	SLO-2	Problems in Supermesh method for mesh analysis	Problems in Parallel resonance circuits		Problems in Transients in RLC circuit with DC excitation	Problems in impedance parameters
S-12	510-1	Nodal analysis in DC circuits with voltage sources	Mesh analysis in AC circuits	Maximum Power Transfer Theorem in DC circuits	Transients in RLC circuit with AC excitation	Admittance parameters
5-12		Problems in Nodal analysis in DC circuits with voltage sources	Problems in Mesh analysis in AC circuits	Problems in Maximum Power Transfer Theorem in DC circuits	Problems in Transients in RLC circuit with AC excitation	Problems in admittance parameters
S-13	SLO-1	Supernodal method for nodal analysis	Nodal analysis in AC circuits	Maximum Power Transfer Theorem in AC circuits	Circuit transients using Laplace transform	Hybrid parameters
3-13	SLO-2	Problems in Supernodal analysis	Problems in Nodal analysis in AC circuits	Problems in Maximum Power Transfer Theorem in AC circuits	Problems in Circuit transients using Laplace transform	Inverse Hybrid parameters
S 14-15	SLO-1 SLO-2	Lab 3: Nodal analysis in DC circuits	Lab 6: Study of series and parallel resonance circuits	Lab 9: Verify maximum power transfer theorem	Lab 12: Analyze Time domain of RLC transient circuits	Lab 15: Determine hybrid parameters

Learning Resources 

 1. Sudhakar A, Shyam Mohan S.P, Circuits and Networks Analysis and Synthesis, 4th ed., Tata McGraw Hill, 2010
 4. Joh

 2. William H. Hayt, Jack E. Kemmerly, Steven M. Durbin, Engineering circuit analysis, 8th ed., McGraw Hill, 2012
 5. http://doi.org/10.1016/j.com/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/stata/sta

John Bird, Electric circuit theory and technology, 5th ed., Taylor and Francis, 2013 https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-071j-introductionto-electronics-signals-and-measurement-spring-2006/lecture-notes/

	Bloom's			Cont	nuous Learning Ass	essment (50% weig	htage)			Final Examination	n (EOO) waightaga)		
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#		n (50% weightage)		
	Level or Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%		
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%		
	Total	10	0 %	10	0 %	10	0 %	10	0 %	10	00 %		

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr . Roosefart Mohan, Nelcast Limited, chennai,roosefart@gmail.com	1. Dr. D. Devaraj, Kalasalingam Academy of Research and Education, deva230@yahoo.com	1. Dr. R. Jegatheesan, SRMIST
2.Mr. Muralikrishna, National Instruments, emkkrishnan@gmail.com	2. Dr. B. ChittiBabu, IIITD, Kanchipuram, chittibabu@gmail.com	2. Dr. J. Preetha Roselyn, SRMIST

Course Code	18EEC202T	Course Name	ELECTROMAGNE	TIC THEORY	Course Category	С	Professional Core	L 3	T 1	P 0	C 4
Pre-requisi Courses	te		Co-requisite Courses		Progre Cour						
Course Offer	ing Department	Electrical a	and Electronics Engineering	Data Book / Codes/Standards	Nil						

Course Learning Rationale (CLR): The purpose of learning this course is to:	Learning Program Learning Outcomes (PLO)																	
CLR-1: Utilize the concepts of Electromagnetic theory for practical applications	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14 1	5
CLR-2: Utilize knowledge about the static electric field and its applications.										~								
CLR-3: Utilize knowledge on static magnetic field	-	_					гch			pilit								
CLR-4: Utilize parameters involved in time varying field and Maxwell's equations	(Bloom)	(%) /	t (%)	aup	<b>b</b>	at	g			Sustainability		Work		8				
CLR-5 : Enrich in the field of Electromagnetic waves	8	ency	Attainment	Knowler		Development	, Res	ge		uste		۶		Finance	p			
CLR-6: Create a mindset to solve various engineering problems in the field of electromagnetism	king	Proficie	ainn	^o u y	lysis	velo	Design, I	Use	Culture	∞ŏ		Team	Б	& Fi	aming			
	Thinking	Pro		pering	Ans I		Des	Tool Usage	& Cu	nment		ø	icati	Mgt.	Ē			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of .	Expected	Expected	Encineer	roblem	Design &	Analysis,	Modern -	Society 8	Environn	Ethics	Individual	Communication	Project N	Life Long	PSO - 1		PSO - 3
CLO-1: Identify the basic laws of electromagnetics and coordinate systems	2	80	75	N	М	-	-	-	-	-	-	М	М	-	-	М	M	-
CLO-2: Solve the Electric field parameters for simple configuration under static condition	3	80	75	H	Н	М	L	-	-	-	-	М	М	-	-	М	M	-
3: Examine the Magnetic field for simple configuration under static condition		80	75	H	Н	М	L	-	-	-	-	М	М	-	-	М	M	-
D-4: Extend the basics of electromagnetic theory on time varying electric and magnetic field		80	75	H	Н	М	L	М	-	-	-	М	М	-	-	М	M	-
0-5 : Analyze propagation of electromagnetic waves		80	75	H	Н	М	L	-	-	-	-	М	М	-	-	М	M	-
CLO-6 : Apply electromagnetic concepts to solve real time problems	3	75	75	H	Н	М	L	М	-	-	-	М	M	-	-	М	М	-

Duration (hour)		12	12	12	12	12
S-1	SLO-1	Vector analysis for three-dimensional Euclidean space	Current density, Ohms Law in point form	Fundamentals of Magnetostatics (B, H)		Wave parameters- velocity, intrinsic impedance- propagation constants
	SLO-2	Stokes and Divergence theorem	Continuity of current equation	Magnetic field due to straight conductor	Motional and transformer EMF	Uniform plane waves
S-2	SLO-1	Three orthogonal coordinate systems –Cartesian system	Boundary conditions of perfect dielectric materials	B and H for a circular loop		Electromagnetic Wave equation for free space,
5-2	SLO-2	Cylindrical and spherical coordinate system	Boundary condition between conductor and dielectric, conductor and free space.	Magnetic field due to infinite sheet of current.	Point form of Maxwell's equation, Integral form of Maxwell's equations	Equation for lossy dielectric medium
S-3	SLO-1	Conversion from one coordinate to another coordinate system	Permittivity of dielectric materials	Magnetic materials, permeability	Phasor representation of time harmonic field	Wave equation for lossless dielectrics and conductors
3-3	SLO-2	Solutions of Coulomb's law	Dielectric strength and dielectric polarization	Magnetic dipole	Energy in quasi-stationary Electromagnetic Fields	Skin effect and skin depth calculations
S-4	SLO-1 SLO-2	Tutorial: Quantitative analysis of coordinate system		Tutorial: Quantitative analysis of B and H calculations	Tutorial: Quantitative analysis of Maxwell's Equation	Tutorial: Quantitative analysis of Electromagnetic Wave Equation
	SLO-1	Fundamentals of electrostatics	Capacitance of a two-wire line.	Magnetization and Magnetic susceptibility	Magnetic Potential	Standing wave
S-5	SLO-2	Electric field intensity (E) andflux density (D) due to point, line and surface charge		Magnetic field in multiple media – Boundary conditions		Plane wave reflection and refraction
S-6	SLO-1	D and E for volume charge distribution	Applications of Laplace and Poisson's equation	Magnetic potential – Scalar and Vector potential. Magnetic diffusion	MagNet software	The incidence of plane wave at the boundary between two regions
3-0	SLO-2	Electric field due to dipole	Uniqueness theorem	Magnetic force and stress tensor	MagNet software for 3D electromagnetic field simulations	Fresenel's coefficient
S-7	SLO-1	Applications of Gauss law's	Duality theorem	Inductance calculation for a solenoid and case study on real time applications of toroid Maxwell's equations		Goos-Hanchen's effect

	SLO-2	Electric Potential and its calculation for different configurations	Method of images	Inductance of a coaxial cable	Problems on time varying field	Snell's law
S-8	SLO-1	Tutorial: Quantitative analysis forD, E and potential calculation	Tutorial: Quantitative analysis of capacitance calculations and Laplace	Tutorial: Quantitative analysis of magnetic boundary conditions	Tutorial: Quantitative analysis of Poynting vectors and magnetic potential	Tutorial: Quantitative analysis of Electromagnetic boundary conditions
	SLO-2		equations	boundary conditions	vectors and magnetic potential	Liectromagnetic boundary conditions
S-9	SLO-1	Force on a moving charge and differential current element	Sketches of fields and field plotting.	Inductance derivation for two wire transmission line	Reflection coefficient	
	SLO-2	Magnetic field and induced emf in rotating machines	Finite difference method (FDM)	Problems on Inductance calculations	Applications of Poynting theorem	Transmission coefficient
S-10		Mutipole concept	FDM to a solution of region and boundary conditions	Energy density in magnetic field	Electromagnetic Wave Equations	Quantitative analysis of wave parameters
5-10		Multipole of electrostatic expansion	Quantitative analysis of FDM	The finite element analysis- an introduction	Solutions of Helmholtz's equation	Brewster angle
S-11	SLO-1	Quadrupole and octupole	Method of moment for Electrostatic field	Finite element method (FEM) for magnetostatic field	Prototype using the concept of EM theory	Critical angle
3-11	SLO-2	Example for multipole expansion	Case study on dust cloud ignition caused by static electricity	Case study on super conducting disk in an external magnetic field.	Minor Project presentation	Case study on fault calculations using EM wave equations
S-12	SLO-1 SLO-2	Tutorial: quantitative analysis of force, current and torque	Tutorial: Quantitative analysis of Electrostatic field calculations	f Tutorial: quantitative analysis of Tutorial: quantitative analysis of magnetostatic field electromagnetic field		Tutorial: Quantitative analysis of EM wave coefficients

 William Hayt, Engineering Electromagnetics, 7th ed., McGraw Hill, 2014
 Matthew. N.O. Sadiku, Elements of Electromagnetics, 4th ed., Oxford University Press, 2010
 David J. Griffths, Introduction to Electrodynamics, 4th ed., Pearson publication, 2013 4. Learning 5. Resources

Joseph A Edminister, Theory and Problem of Electromagnetics, Schaum's outline series McGraw Hill, 2006 https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-632-electromagnetic-wave-theoryspring-2003/index.htm

Learning Asse	essment											
	Bloom's			Final Examination	(EOV) weightage)							
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#		n (50% weightage)	
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-	
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-	
Level 3	Evaluate 20 % - 30 % -		30 %	-	30 %	-	30%	-				
	Total	100	0%	10	0%	100	0%	100	0%	100 %		

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. S. Paramasivam, Danfoss, Industries Pvt Ltd, paramsathya@yahoo.com	1. Dr. K. S. Swarup, IIT Madras, ksswarup@iitm.ac.in	1. Mrs. R. Rajarajeswari, SRMIST
2. Mr.J. Sasikumar, Philips India Limited, Chennai	2. Dr. A. Venkadesan, NIT, Pondicherry, venkadesan@nitpy.ac.in	2. Mrs. D. Anitha, SRMIST

Course Code	18EEC203J	Cours Name		DIGITAL S	YSTEM DESIGN	Cou Cate			С	Professional Core							L 3	T 0	P (	C 4					
Pre-requisite Courses	18EES101J			Co-requisite Courses				jressi jurse																	
Course Offering	g Department	Ele	ectrical and Electron	ics Engineering	Data Book / Codes/Standards	Data Book / Codes/Standards Nil																			
Course Learnin	g Rationale (CLI			Le	arnir	ıg					I	Progra	am Lo	earni	ing O	utcon	nes (F	PLO)							
CLR-1: Utilize							1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14 1	15
	e combinational lo													_			≥								
	n and implement						Ê	(%)	(%		Ð			Design, Research			Sustainability		×						
			ons using transistor VHDL programming				(Bloom)	cy ('	int (		edg		meni	Sese	Ð		stain		Work		Finance				
	ze and design dig			y .			) gu	cien	nme		NOL	SIS.	lopi	ĴU, F	sag	<u>e</u>			an	c	Fine	ning			
CLK-0. Analy	ze anu uesign uit	yilai ioyic	Circuits				Thinking	Profi	Attainment (%)		g Kı	naly	Deve	Desi	Tool Usage	& Culture	ent &		& Te	atio	<b>∞</b> ŏ	Learning			
Course Learnin	g Outcomes (CL	- <b>O)</b> : At t	the end of this cours	se, learners will be able	ə to:		Level of Th	Expected Proficiency	Expected ,		Engineering Knowledge	Problem Analysis	Design & Development	Analysis, [	Modern To	Society & I	Environment &	Ethics	Individual & Team	Communication	Project Mgt.	Life Long I	PS0-1		PSO-3
CLO-1 : Simp	lify Boolean expre	ession					2	75	75		H	M	М	М	-	-	-	-	М	М	-	-	L	M	-
CLO-2 : Solve problems in combinational logic circuits							3	75	75		Н	М	М	М	-	-	-	-	М	М	-	-	L	М	-
				and verify them in labo	pratory	-	3	75	75		Н	М	М	М	-	-	-	-	М	М	-	-	L	М	-
			ation of logic gates a				2	75	75		Н	М	L	L	-	-	-	-	М	М	-	-	L	М	-
CLO-5 : Implement digital circuit using PLA, PAL, PROM. Write programs using VHDL					HDL		3	75	75		Н	L	L	L	L	-	-	-	М	М	-	-	М	М	-
CLO-6: Apply the concepts of digital systems and experimentally validate them							3	75	75		Н	М	М	М	L	-	-	-	М	М	-	-	L	Μ	-

Durati	on (hour)	15	15	15	15	15
S-1	SLO-1	Minterms, Canonical SOP form	Binary multiplier	Introduction to latches/Flip flop	Introduction to asynchronous sequential circuit	Memory organization and operation
3-1	SLO-2	Simplification of switching function using K maps-SOP method	Binary divider	Flip flop: SR flip flop	Steps involved in design of asynchronous sequential circuit	Classification of memories ROM, PROM, EPROM, RAM
S-2		Simplification of Incompletely specified function using K maps- SOP method	Arithmetic logic unit (ALU)	Flip flops: D flip flop	Merger graph	Content addressable memory, Charge decoupled device memory
3-2		Simplification of switching function with Don't care using K maps-SOP method	Elementary ALU design	Flip flops: JK & T flip flops	Problems in design of asynchronous sequential circuit	Commonly used memory chips
	SLO-1	Maxterms, Canonical POS form	Multiplexer	nip nops	Cycles	Programmable Logic Array(PLA)
S-3		Simplification of switching function using K maps-POS method	Implementation of Boolean expression using multiplexer	Realization of D flip flop using T flip flop, Realization of T flip flop using D flip flop, Realization of JK flip flops using D flip flop	Critical and non-critical Races, Hazards	Implementation of Boolean function using PLA
S 4-5	SLO 2	Lab 1: Simplification of switching function using K maps and implementation using logic gates	Lab 4: Realization of MUX, Realization of Boolean expression using MUX	Lab 7: Realization of one flip flop using another flip flop	Lab 10: Design and implementation of Hazard free circuit	Lab 13: Realize Boolean algebra using PLA
S-6	510-1	Quine-McCluskey method for 4 variable problem	Demultiplexer	Design of synchronous sequential circuits- Moore Model using D flip flop	Problems in design of asynchronous sequential circuit including races	Programmable Array Logic (PAL)
3-0		Quine-McCluskey method for4 variable problem with Don't care	Implementation of Boolean expression using demultiplexer	Design of synchronous sequential circuits- Moore Model using JK flip flop	Analysis of asynchronous sequential circuits	Implementation of Boolean function using PAL
S-7	510-1	Quine-McCluskey method for5 variable problem	Decoders,	Design of synchronous sequential circuits- Moore Model using T flip flop	Analysis of asynchronous sequential machines with latches	Complex programmable logic device (CPLD), FPGA
3-1		Quine-McCluskey method for5 variable problem with Don't care	BCD to 7 segment decoders, drivers for display devices	Design of synchronous sequential circuits- Mealy Model using D flip flop	Asynchronous up Counters, Asynchronous down Counters design	Introduction to VHDL programming

SRM Institute of Science & Technology – Academic Curricula (2018 Regulations) - Control copy 205

S-8	SLO-1	Adder: Half adder, Full adder	Encoder	Design of synchronous sequential circuits- Mealy Model using JK flip flop	Design of asynchronous up/down counter	VHDL design flow
3-0	SLO-2	Subtractor: Half subtractor, Full subtractor	Priority encoder	Design of synchronous sequential circuits- Mealy Model using T flip flop	Design of asynchronous MOD-n Counter	VHDL types and operators
s	SLO-1	Lab 2: Realization of combinational circuits: Half adder, Full adder, Half	Lab 5: Design of BCD to 7 segment	Lab 8: Design and implementation of	Lab 11: Design of asynchronous Counters	Lab 14: Verification of gates using EPGA
9-10	SLO-2	subtractor, Full subtractor	decoders	synchronous sequential circuits		
S-11		Parallel binary adder and parallel binary subtractor	Parity generator		Digital logic families	Structural and Behavioral Modelling
3-11	SLO-2	Parallel adder/subtractor	Parity checker	Analysis of synchronous sequential circuits using JK flip flop	TTL Logic, Schottky TTL Logic, CMOS Logic	Data flow Modelling
S-12	SLO-1	Carry look ahead adder	Code Converter: Binary to Grey	Synchronous counters: up, down, up-down counters	ECL logic	Packages, subroutines
5-12	SLO-2	BCD adder	Code Converter: Grey to Binary	MOD-n, Random counters	Interfacing CMOS with TTL	Test bench
S-13	SLO-1	Magnitude Comparator for 1,2-bit Comparator	Code Converter: BCD to Excess 3	Shift registers, Serial to parallel converter, Parallel to serial converter, Universal shift register	Tristate logic	Simple VHDL program: Combinational logic circuits
	SLO-2	Magnitude Comparator for 4-bit Comparator	Code Converter: Excess 3 to BCD	Ring counter, Johnson counter	Comparison between various logic circuits	Simple VHDL program: counters
S 14-15		Lab 3: Realization of BCD adder and 2-bit Magnitude Comparator	Lab 6: Realization of Code Converters	Lab 9: Design of Synchronous Counters, Design of shift registers and ring counters		Lab 15: Verification of Combinational logic circuits using FPGA

Learning Resources

M. Morris Mano, Michael D. Ciletti, Digital Design: With an Introduction to Verilog HDL, VHDL and System Verilog, 6th ed., Pearson, 2018
 Thomas L.Floyd, Digital Fundamentals, 11th ed., Pearson India, 2014

Charles H. Roth, Lizy K. John, Digital System Design Using VHDL, 2nd ed., Cengage learning, 2012
 https://ocw.mit.edu/courses/electrical-engineering-and-computer-science

Learning Asse	essment												
	Bloom's			Contin	uous Learning Asse	essment (100% weig	htage)			Einel Ev	amination		
	Level of Thinking	CLA –	1 (20%)	CLA –	2 (30%)	CLA – S	3 (30%)	CLA – 4	4 (20%)#				
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%		
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
Level 3	Evaluate Create	10%	10%	5 15% 15% 15% 15% 15%		15%	15%	15%					
	Total	10	0 %	100 % 100 %					0 %	100 %			

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Roosefart Mohan, Nelcast Limited, Chennai, roosefart@gmail.com	1. Dr. D. Devaraj, Kalasalingam Academy of Research and Education, deva230@yahoo.com	1. Dr. C. S. Boopathi, SRMIST
2. Mr. Muralikrishna, National Instruments, emkkrishnan@gmail.com	2. Dr. B. ChittiBabu, IIITD, Kanchipuram, chittibabu@gmail.com	2. Ms. D. Anitha, SRMIST

Course Code	18EEC204J	Course Name     ELECTRICAL MACHINES I     Course Category     C     Profe									Profe	ssiona	l Core					L 3	T 0	P 2	C 4			
Pre-requis Courses				Co-requisite Courses					gress ourse															
Course Offe	Course Offering Department         Electrical and Electronics Engineering         Data Book / Codes/Standards         Nil																							
Course Lear	Durse Learning Rationale (CLR):     The purpose of learning this course is to:     Learning																							
CLR-1: Ar	nalyze the character	istics of differe	ent types of DC	generators				1	2	3	1	2	3	4	5 (	67	8	9	10	11	12	13	14	15
CLR-3 : Ar CLR-4 : Te CLR-5 : Me	entify the working, singlyze transformers ast DC machines and odel DC machines alyze the performar	and derive its d transformers	equivalent circ s as per standa	uit ard practice				Thinking (Bloom)	ficiency (%)	Attainment (%)	nowledge	ysis	elopment	Analysis, Design, Research	Jsage	ture & Sustainability		eam Work	n	& Finance	Learning			
	•			rse, learners will be able	to:		<b>4</b>	Level of	Expected Proficiency (%)	52 Expected Atta	: Enaineerina Knowledae	- Problem Analysis	Design & Development	~	Moderr	Society & Culture Frivironment & Su		Individual & Team Work	Communication	Project Mgt.	Life Long Lea	: PSO - 1	: PSO - 2	PSO - 3
	nalyze the principle a							2	75		H	L	-	-	-		-	M	M M	-	-	M M	M	-
	nalyze the principle a				a oquivolont oirouit			2	75 75	75	H	L	-	-	-	-	-	M		-	-	M		-
				lyze its performance usir achines and transformer				2	75	75 75	H	M	-	-	-		- M	M M	M M	-	-	M	M M	- M
	nalyze DC machines			achines and transformers	s periorning sultable	6 (62)2		3	75	75	H H	M	-	-	-		- M	M	M	-	-	M	M	IVI
CLO-5: A/ CLO-6: Ev	aluate characteristic	cs of transform	ners, DC Mach	ines and evaluate their p	erformance by appl	ying various testing me	thods	3	75	75	H	M	L	L	L		L	M	M	-	-	M	M	L
Duration (ho	ur)	15		15		1:	<b>j</b>						15							1	5			

Durat	ion (hour)	15	15	15	15	15
S-1	SLO-1	Energy in magnetic system	Torque equation of DC motor	Transformers: Types and Construction	Testing of DC machines: Brake test	Modeling of dc machines: Basic two pole DC machine
3-1	SLO-2	Field energy and mechanical force	Emf equation of DC motor	Principle of operation, emf equation	Swinburne's test	Analysis of DC machine using Primitive two axis machine equation
S-2	SLO-1 Single excited systems		Voltage equation of various types of DC motor	Ideal transformer and Practical transformer on no load	Problems in Swinburne's test	Modelling of voltage equation
5-2	SLO-2	Multiple excited systems	Current equation of various types of DC motor	Practical transformer on load	Retardation test	Modelling of torque equation
S-3	SLO-1	Torque and Force equations	Speed equation and regulation of DC motor	Equivalent circuit of transformer	Hopkinson's test	Mathematical model of separately excited DC machine
3-3	SLO-2	Energy conversion via electric fields	Power flow in DC motor, Losses & efficiency	Transformer regulation, losses, efficiency	Problems in Hopkinson's test	Problems in mathematical model of separately excited DC machine
S 4-5	SLO-1 SLO-2	Lab 1: Demo on Single & Multiple excited systems	Lab 4: Load test on DC motors	Lab 7: Load test on single-phase transformer	Lab 10: Swinburne's test and Hopkinson's test on DC machine	Lab 13: Study of impulse test in transformer
S-6	SLO-1	Dynamic equation of electromechanical systems	Review of mechanical starter- 3-point starter	Phasor diagram of transformer	Open circuit test on single phase transformer	Mathematical model of shunt connected DC machine
3-0	SLO-2	DC generator- lap and wave winding, Major considerations in design of windings	4-point starter, 2-point starter	EMF in power transformers	Short circuit test on single phase transformer	Problems in mathematical model of shunt connected DC machine
S-7	SLO-1	DC generator-EMF equation-circuit model	Electronic soft starters for DC motor with energy saving	All day efficiency, Per unit representation of transformer	Sumpner's test	Mathematical model of series connected DC machine
3-1	SLO-2	Methods of excitation	Speed control: Field control, Armature control	Three phase transformers connections, Scott connection	, , , ,	Problems in mathematical model of series connected DC machine

S-8	SLO-1	Losses in DC generator	Speed control: voltage control	Phasing of transformer	Equivalent circuit, efficiency and regulation from Sumpner's test	Mathematical model of compound connected DC machine
3-0	SLO-2	Power flow in DC generator, efficiency	Problems in DC motors	Parallel operation of single phase and three phase transformers	Problems in OC & SC test	Problems in Mathematical model of compound connected DC machine
s	SLO-1	Lab 2: Open circuit and load	Lab 5: Speed Control of DC Motor: Field	Lab 8: Load test on three phase	Lab 11: Open circuit and short circuit test	Lab 14: Study of zero sequence
9-10	SLO-2	characteristics of Separately Excited DC generator	control, Armature control	transformer	and Sumpner's test on single phase transformer	impedance and noise level test in transformer
S-11	SLO-1	Effect of armature flux on field flux in DC generator	Speed control: Thyristor control	Auto transformer	Routine test on transformer	Time domain model of shunt connected DC machine
5-11	SLO-2	Use of compensating windings, Ampere- Tums calculations	Speed control: Converters control	Tap changing transformers- tertiary winding	Dielectric and parametric test on transformer	State equations of shunt connected DC machine
S-12	SLO-1	Commutation in DC generator, construction of commutator,	Speed control: choppers control	Variable frequency transformer, audio frequency transformer	Type test on transformer	Problems in state equations of shunt connected DC machine
5-12	SLO-2	Methods to improve commutation	Braking of DC motors	Phase shifting transformer, dry type transformer	Temperature rise and impulse test on transformer	Time domain model of permanent magnet DC machine
S-13	SLO-1	Voltage and current equation, Residual voltage, Critical Resistance	Permanent magnet DC motor	Grounding transformer, traction transformer	Unbalance current, magnetic balance test on transformer	State equations of permanent magnet DC machine
5-15	SLO-2	Problems in DC generator	Problems in speed control	Welding transformer, rectifier transformer	Zero sequence impedance and noise level test on transformer	Problemsin state equations of permanent magnet DC machine
S 14-15		Lab 3: Open circuit and load characteristics of Self Excited DC generator	Lab 6: Speed Control of DC Motor: Thyristor, converter and chopper control	Lab 9: Parallel operation of single phase and three phase transformers	Lab 12: IEC/IEEE standard practice on transformer testing	Lab 15: Simulation of separately and self- excited DC machine

Learning Resources D. P. Kothari, I. J. Nagrath, Electrical Machines, 5thed., Tata-McGraw Hill, 2017
 A. E. Fitzgerald, C. Kingsley, Electric Machinery, 6th ed., McGraw Hill Education, 2013

3. Paul C. Krause, Oleg Wasynezuk, Scott D. Sudhoff, Analysis of electric machinery and Drive systems

3rd ed., IEEE Series, John Wiley & Sons, 2013 https://ocw.mit.edu/courses/electrical-engineering-and-computer-science 4.

Learning Asse	ssment										
	Bloom's			Contin	uous Learning Asse	essment (100% weig	ghtage)			Einal Ev	amination
	Level of Thinking	CLA –	1 (20%)	CLA –	2 (30%)	)%) CLA – 3 (30%)			l (20%)#		
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Total	100	0 %	100	) %	10	0 %	10	0 %	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. S. Paramasivam, Danfoss Industries Pvt Ltd, paramsathya@yahoo.com	1. Dr. D. Devaraj, Kalasalingam Academy of Research and Education, deva230@yahoo.com	1. Dr. C. S. Boopathi, SRMIST
2.Mr. Muralikrishna, National Instruments, emkkrishnan@gmail.com	2. Dr. B. ChittiBabu, IIITD, Kanchipuram, chittibabu@gmail.com	2. Dr. K. Vijayakumar, SRMIST

Cou Co		18EEC205J	Course Name	ELECT	RICAL MACHINES II		Cour Categ		(	C				Prof	essio	nal Co	ore					L 3	T 0	P 2	C 4
	requisite ourses	18EES101J		Co-requisite Courses			F		essiv Irses	e															
Cours	e Offering	g Department	Electrical and Electro	onics Engineering	Data Book	/ Codes/Standards	N	I																	
Cours	e Learnin	g Rationale (CLR	t): The purpose of learni	ng this course is to:				Lea	rning	J				I	Progr	am L	earni	ng Oı	utcom	ies (F	PLO)				
CLR-1			ting magnetic field in three					1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2 CLR-3 CLR-4 CLR-5 CLR-6	: Deve : Cons : Analy	lop an equivalent o truct an equivalent rze the working an	of three phase induction m circuit of single phase indu t circuit and phasor diagra d characteristics of salient operation and performanc	ction motor and expl m of an alternator and pole alternator and s	ain the operation of sing d obtain its voltage regu	le phase AC machines		Thinking (Bloom)	Expected Proficiency (%)	Attainment (%)	Engineering Knowledge	Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Culture	ent & Sustainability		& Team Work	cation	gt. & Finance	Learning			
Cours		•	<b>O):</b> At the end of this cou					Level of		Expected /	Engineeri	Problem Analysis	Design &	Analysis,	Modern T	Society & Culture	Environment &	Ethics	Individual &	Communication	Project Mgt. &	Life Long	PS0-1	PSO-2	PSO-3
CLO-1			three phase induction mot						75	75	Н	Н	М	-	-	-	-	-	М	М	-	-	L	М	-
CLO-2			speed control methods of			s performance				75	Н	Н	М	-	-	-	-	-	М	М	-	-	М	М	-
CLO-3	,		ngle phase AC machines a		hase induction motor					75	Н	M	L	-	-	-	-	-	М	М	-	-	L	М	-
CLO-4 CLO-5			compute its voltage regulat nd control of salient pole a		nous motor					75 75	H H	H	M	-	-	-	-	-	M M	M	-	-	L	M M	-
CLO-5			ce of an AC machine by m			ments				75	H	M	M	-	-	-	-	-	M	M	-	-	L	M	-
Dung			45		45					T			45									-			
Durati	on (hour)		15		15	15	_ /						15								15	)			
S-1	SLO-1	Review of poly pr winding, Producti	hase distributed AC ion of EMF	Construction of circl induction motor	le diagram for 3-phase	Constant magnetic field, magnetic field	Pulsa	ting			rnators- s, Shor						1 5	Salien	t pole	sync	hronc	ous m	achin	е	
3-1	SLO-2		ves in induction motor	Performance calcul diagram	ation from circle	Alternating current in win displacement	ding v	vith s	oatial		centrate n factor.						Coil E	Blond	el's tw	o rea	action	theor	у		

S-1	SLO-1	winding, Production of EMF	induction motor	magnetic field	types, Short pitch and full-pitch coils	Salient pole synchronous machine
3-1	SLO-2	Flux and mmf waves in induction motor	Performance calculation from circle diagram	Alternating current in winding with spatial displacement	Concentrated and distributed winding, Coil span factor, Winding distribution factor	Blondel's two reaction theory
S-2	SLO-1	Constructional details of three-phase induction motor	Problems in circle diagram	fixed current and alternating current	Air gap MMF distribution with fixed current	Phasor diagram using Xd, Xq
5-2	SLO-2	Principle of operation of three-phase induction motor	Determination of maximum quantities from circle diagram	Pulsating fields produced by spatially displaced windings	Air gap MMF distribution with sinusoidal current	Slip test, Voltage regulation using slip test
S-3	SLO-1	Slip, Effect of slip on rotor parameters	Need for speed control	Windings spatially shifted by 90 degrees	EMF equation of alternator	Power output of Salient pole synchronous machine
0-0	SLO-2	Torque equation, Starting torque equation, Maximum torque	Speed control of three-phase induction motor: Stator side	Addition of pulsating magnetic fields	Armature reaction, Alternator on load, phasor diagram	Problems in voltage regulation
S	SLO-1	Lab 1: Load test on 3 phase induction	Lab 4: Speed control of three-phase	Lab 7: Demo of spatially displaced	Lab 10: Load test on 3 phase alternators	Lab 13: Determination of Xd and Xq of
4-5	SLO-2	motor	induction motor: stator side	windings	Eus 10. Eous tost on o phase alternators	salient pole machine
S-6	SLO-1	Torque-slip characteristics, Generation and breaking region in Torque-slip characteristics	Speed control of three-phase induction motor: rotor side	Constructional detail of single phase induction motor	Edulivalent circulit and phasor diadram	Synchronous motor: Principle of operation, Methods of starting
5-0	SLO-2	Starting characteristics of 3 phase induction motor, Effect of Rotor resistance on Torque-slip characteristics	Speed control by solid state devices	Double revolving field theory	Synchronous Impedance, voltage regulation	Torque and power equations
<b>S-</b> 7	SLO-1	Power Stages	Necessity of Starters	Torque equation		Synchronous motor on load, Synchronous motor on constant excitation variable load

	SLO-2	Relation between rotor input, rotor copper losses and rotor output	Types of starters	Torque- speed characteristics	Problems in EMF method	Synchronous motor on constant load variable excitation, 'V', inverted 'V' curves
S-8	SLO-1	Propients in power stades	Induction generator, Self-excited Induction generator	No load blocked rotor tests	Pre-determination of voltage regulation using MMF method	Synchronous condenser, Hunting and its suppression
3-0	SLO-2	No load and blocked rotor tests	Doubly-Fed Induction generator	Equivalent circuit	Problems in MMF method	Short circuit transient in synchronous machine
S	SLO-1	Lab 2: No load and blocked rotor test on 3-			Lab 11: Voltage regulation of alternators by	
9-10	SLO-2	phase squirrel cage induction motor	induction motor on rotor side	phase induction: To draw equivalent circuit	EMF and MMF methods	'V' curves in synchronous motor
S-11	SLO-1	Steady state analysis-Equivalent circuit	Harmonics in induction motor		Pre-determination of voltage regulation using ZPF method	Capability curves in synchronous machine
3-11	SLO-2	Motor efficiency, rotor efficiency	Crawling, Cogging	Shaded pole induction motor	Problems in ZPF method	Positive, Negative and Zero sequence reactance of synchronous machines
S-12	SLO-1		Electric Braking: Regenerative braking, Plugging Braking	Linear Induction motor, Universal motor	Pre-determination of voltage regulation using ASA method	Synchronous induction motor
0-12	SLO-2	Problems in no load and blocked rotor test	Electric Braking: AC, DC dynamic braking	Reluctance motor	Problems in ASA method	Brushless DC motor
S-13	SLO-1	Double cage rotor	Slip power recovery scheme	AC series motor, Repulsion motor	Parallel operation of alternators, Load sharing	Permanent Magnet Synchronous Motor
3-13	SLO-2		Difference in starting and blocked rotor characteristics	Stepper motor	Voltage and frequency control, Synchronization to infinite bus-bar	Tacho generator
S	SLO-1	Lah 3: No load and blockod rotor tost on 3	Lab 6: Characteristics of 3 phase Induction	Lab 0: Load test on single phase induction	Lab 12: Voltage regulation of alternators by	
3 14-15	SLO-2		generator	motor		Negative and Zero sequence reactance of synchronous machines

Learning Resources H.Wayne Beaty&Jame. L.Kirtley.Jr, Electric Motor Handbook, McGraw-Hill, USA, 1st Edition, 1998
 M.G.Say, The Performance and Design of Alternating Current machines, Tata-McGraw Hill, 1st Edition, 2004

 J. B. Gupta, Theory & Performance of Electrical Machines, 15th ed., S. K. Kataria & Sons, 2015
 https://cow.mit.edu/courses/electrical-engineering-and-computer-science/6-685-electric-machinesfall-2013/index.htm

Learning Assess	ment										
	Bloom's			Contir	uous Learning Asse	ssment (100% weig	ghtage)			Einal Ev	amination
	Level of Thinking	CLA –	1 (20%)	CLA –	2 (30%)	CLA –	3 (30%)	CLA – 4	(20%)#		
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Lever	Understand	20%	20%	13%	13%	13%	15%	10%	13%	15%	13%
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Leverz	Analyze	2070	2070	2070	2070	2070	2070	2070	2070	2078	2070
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
Level 3	Create	1070	1070	1370	1370	1370	1370	1370	1370	1370	10/0
	Total	100	0 %	10	0%	10	0 %	100	)%	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. S. Paramasivam, Danfoss Industries Pvt Ltd, paramsathya@yahoo.com	1. Dr. D. Devaraj, Kalasalingam Academy of Research and Education, deva230@yahoo.com	1. Dr. C. S. Boopathi, SRMIST
2. Mr. Muralikrishna, National Instruments, emkkrishnan@gmail.com	2. Dr. R. Ramesh, CEG, rramesh@annauniv.edu	2. Dr. K. Vijayakumar, SRMIST

Course Code	18EEC206J	Course Name	ANALOG ELECTRONICS	Course Category	,	С				Proi	fessio	nal C	ore				-	L 3	T 0	P 2	C 4
Pre-requisit Courses	18EES101J		Co-requisite Courses	Cc	gress ourse																
	ng Department ing Rationale (CL		ctronics Engineering Data Book / Codes/Standards arring this course is to:	Nil	earni	ng					Progr	ram L	.earnir	ng Ou	utcom	nes (P	'LO)				
CLR-1 : Kno	ow the basic amplifi	er circuits.		1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-3 : Cor CLR-4 : Disc CLR-5 : Unc	nstruct different way cuss the basics of o derstand different a	different power amplifie veform generating circui operational amplifiers. nalog to digital and digit 's using transistor and o	ts. al to analog converters	of Thinking (Bloom)	Expected Proficiency (%)	d Attainment (%)	Engineering Knowledge	Problem Analysis	& Development	Analysis, Design, Research	Aodern Tool Usage	& Culture	nent & Sustainability		al & Team Work	lication	Agt. & Finance	g Leaming			
Course Learn	ing Outcomes (CL	.0): At the end of this	course, learners will be able to:	Level of	Expecter	Expected ,		Problem	Design 8	Analysis	Modern	Society &	Environment	Ethics	Individual &	Communication	Project Mgt. &	Life Long	PSO - 1	PSO - 2	PSO - 3
CLO-1 : Ana	alyze the amplifier o	ircuits using small signa	I model and hybrid model	2	75	75	Н	Н	Н	Ĥ	-	-	L	-	М	М	-	-	М	Н	-
	cognize the differen			2	75	75	Н	Н	Н	Н	-	-	-	-	М	М	-	-	М	Н	-
	sign oscillators and			3	75	75	Н	Н	Н	М	-	-	-	-	М	М	-	-	М	М	-
	oly different operation			2	75	75	Н	М	М	-	-	-	-	-	М	М	-	-	М	М	-
	aluate filters and co	onverter circuits c modern tools in variou	s electronic fields	3	75 75	75 75	H	H H	H H	M	H M	-	-	-	M M	M	-	-	M	M	-

Duratio	on (hour)	15	15	15	15	15
S-1 -			Power amplifiers: Types. Determine efficiency for class A, B power amplifier	Oscillators and classification of oscillators	Introduction to Linear Integrated Technology	Filters basics and types
0-1	SID	Base bias with collector feedback and voltage divider bias	Frequency response of RC coupled class A amplifier	Design and Analysis of RC Phase shift oscillator		Design of I and II Order LPF
S-2 -	SLO-1		Frequency response of Transformer coupled class A amplifier.	Operation of Hartley's oscillator	Dc characteristics of op amp and input bias current.	Design of I Order HPF
3-2	SLO-2	<b>o</b> , o	Operation of Class B push pull power amplifier	Analysis of Hartley's oscillator	Input offset voltage, Thermal Drift	Design of II Order HPF
S-3 -	SLO-1	Operation of BJT as an amplifier	Operation of Differential amplifier	Operation of Armstrong oscillator	AC characteristics of op-amp and Frequency Compensation	Design of BPF and BRF
3-3	SLO-2	CE, CB, CC Amplifier – Evaluation of h- parameters	Analysis of Differential amplifier	Operation of UJT Relaxation oscillator	Slew rate	Switched variable filters and state variable filters.
S 4-5			Lab 4: Determination of gain of an amplifier.	Lab 7: RC Phase shift oscillator	Lab 10: and AC characteristics of IC 741 Op-amp	Lab 13: Design of Low pass and High Pass Filters.
S-6	SLO-1	Small signal analysis of CE Amplifier	Self–biased active load differential amplifier	Operation of Cross Coupled oscillator	Inverting amplifier and Non-inverting amplifier	Oscillators- Wein bridge Oscillator using IC 741.
5-0	SLO-2		Source degenerated common source amplifier	Integrators	Summer and Subtractor.	Amplitude control and Quadrature Control Oscillator
0.7	SLO-1	Large signal analysis of CE Amplifier	Classification of class C power amplifiers (Tuned amplifiers)	Differentiators	Voltage follower and ac amplifiers	Introduction to simple MOSFET based op- amp circuits.
S-7	SLO-2	Large signal analysis of CB and CC amplifier.	Frequency response of Single,Double and Staggered Tuned Class C power amplifier	Schmitt trigger	V to I and I to V converters	Analog to Digital converters, classification. Counter and Sigma Delta type ADC.
S-8		JFET –Common source (CS) amplifier - operation	Cascode and Cascade circuits	Multivibrator, Classification Operation of Astable Multivibrator	Instrumentation amplifier	Successive approximation type ADC

	SLO-2	CS Amplifier – small signal analysis	Feedback amplifiers –Barkhausen criterion and Types of feedback amplifier	Analysis of Astable Multivibrator	Log and Antilog amplifiers	Digital to Analog converters and Pulse width modulator DAC
S 9-10	SLO-1 SLO-2	Lab 2: Analysis of JFET amplifier	Lab 5: Frequency response of RC coupled amplifier	Lab 8: AstableMultivibrator	Lab 11: Applications of op-amp	Lab 14: Wein bridge oscillator using IC 741.
S-11	SLO-1	JFET – Common Drain (CD) Amplifier – operation	Analysis of voltage series feedback amplifier		Comparators and classification of comparators	R -2R Ladder DAC
3-11	SLO-2	Small signal analysis of MOSFET	Analysis of voltage shunt feedback amplifier	Analysis of Monostable Multivibrator.	Applications of Comparators : Summer, Subtractor, Voltage follower	Binary coded DAC
	SLO-1	Biasing of MOSFET	Analysis of current series amplifier	Operation of Bistable Multivibrator.	Basics of IC 555 Timer and Pin Details	Case study: Minor project on any
S-12	SLO-2	CD Amplifier – small signal analysis	Analysis of current shunt feedback amplifier	Analysis of Bistable Multivibrator.	Astable operation using IC 555 Timer with applications	advanced application based circuit using IC 741 or IC 555 Timer or IC 723.
S-13	SLO-1	Problems on biasing of circuits.	Problems on power amplifiers.	Voltage and time-based circuits.	Monostable operation using IC 555 Timer with applications	Case study: Minor project on any advanced application based circuit using
0.10	SLO-2	Problems on hybrid parameters	Problems on feedback amplifiers	Series and shunt voltage regulator	Voltage regulator using IC 723	IC 741 or IC 555 Timer or IC 723.
S 14-15	SLO-1 SLO-2	Lab 3: Analysis of MOSFET amplifier	Lab 6: Frequency response of Class C Power amplifier	Lab 9: Transistor series voltage regulator	Lab 12: Voltage Regulator Using IC 723	Lab 15: R -2R Ladder DAC

Jacob Millman, Christos C.Halkias, SatyabrataJit, Millman's Electronic Devices and Circuits, 4th ed., Tata McGraw Hill, 2015 1. Learning Resources 2. Boylestead, Nashelsky, Electronic Devices and Circuit Theory, 11th ed., Pearson, 2015

 Sergio Franco, Design with operational amplifiers and Analog Integrated circuits, 5th ed., McGraw-Hill, 2014
 Roy Choudhary and Shail Jain, Linear Integrated Circuits, 4th ed., New Age International Publishers, 2014
 https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronicsspring-2007/syllabus/

3.	David A.	Bell,	Electronic	Devices	and Circuits,	5 th ed.,	Prentice Hall	l, 2004	

Learning Asse	essment										
	Bloom's			Contin	uous Learning Asse	essment (100% weig	htage)			Einal Ev	amination
	Level of Thinking	CLA –	1 (20%)	CLA – 2 (30%)		CLA –	3 (30%)	CLA – 4	(20%)#		ammauom
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Total	100	) %	100	0%	100	0 %	10	) %	10	0 %

Course Designers										
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts								
1. Dr. S. Paramasivam, Danfoss Industries Pvt Ltd, paramsathya@yahoo.com	1. Dr. P. Satheeshkumar, Anna University, silkart@gmail.com	1. Ms. R. C. Ilambirai, SRMIST								
2. Mr. B. Nliranjithkumar, BEL, Chennai., niranjithkumarb@bel.co.in	2. Dr. S. Kamalakannan, Anna University, kamalakannan1612@gmail.com	2. Dr. K. Mohanraj, SRMIST								

Due ve avuisite			Co requisito		Due autor	a luca					
Course , Code	18EEC207J	Course Name		ELECTRONICS MEASUREMENTS INSTRUMENTATION	Course Category	С	Professional Core	L 3	Т 0	P 2	C 4

Pre-requisite		Co-requisite		Progressive	
Courses		Courses		Courses	
Course Offering	Department	Electrical and Electronics Engineering	Data Book / Codes/Standards	Nil	

Course Le	Course Learning Rationale (CLR): The purpose of learning this course is to:		Learning Program Learning Outo						utcon	omes (PLO)											
CLR-1 :	Utilize the knowledge of val	rious types of measuring instruments, DC and AC bridge.	1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2 :	Utilize the working of analog	g meters for power, energy and harmonic measurements																			
CLR-3 :	Utilize different measuring a	and display devices	-	_						search			Sustainability								
CLR-4 :	Compare the measurement	t of non- electrical quantities.	(Bloom)	(%) /	t (%)		dge		ant	sea			aina		Work		8				
CLR-5 :	Analyze the functions of bio	omedical instruments and data acquisition system	B)	Suc	nen		wlec		bme	Re	ge		usta		Ν		Finance	p			
CLR-6 :	Utilize the knowledge abou	t measurements, measuring instruments for practical applications	Thinking	Proficiency	Attainment		Хnо	lysi	Development	Design,	Use	Culture	∞ŏ		Team	ы	8 Fi	amir			
			Thin	H Pro			ing	Analysis	De	Des	Tool Usage	& Cu	ent		حە	icati	Mgt.	Le			
Course Le	earning Outcomes (CLO):	At the end of this course, learners will be able to:	_evel of	Expected	Expected		Engineering Knowledge	Problem.	Design &	Analysis,	Modern 7	Society 8	Environment	Ethics	Individual	Communication	Project M	Life Long	PS0 - 1	PSO-2	PSO-3
CLO-1 :	Solve the problems in measure	suring instruments and bridges	3	75	75		Ħ	L	-	-	L	-	-	-	M	М	-	-	L	М	-
CLO-2 :	CLO-2: Apply the different analog meters for power, energy and harmonic measurements.				75		Н	L	-	-	-	-	-	-	М	М	-	-	L	М	-
CLO-3 :	CLO-3: Design the operation of different measuring and display devices				75		Н	L	-	-	-	-	-	-	М	М	-	-	L	L	-
CLO-4 :					75		Н	-	-	-	L	-	-	-	М	М	-	-	L	L	-
CLO-5 :	CLO-5: Describe the working of biomedical instruments and data acquisition system				75		Н	-	-	-	-	-	-	-	М	М	-	-	L	М	-
CLO-6 :					75		Н	L	-	-	L	-	-	-	М	М	-	-	L	М	-

Durati	on (hour)	15	15	15	15	15	
S-1	SLO-1	Functional elements of instrument	Special type of transformers -Current Transformer	Construction and working of synchro scope – Western type	Methods of pressure measurements- Dead-weight gauges and Manometers	Over view of biomedical measurements	
3-1	SLO-2	Static characteristics of measurement	Potential Transformer- Measurement of voltage	1 21	Pressure measuring system	Sources of bio electric potentials, Electrodes	
S-2	SLO-1	Dynamic characteristics of measurement	Principle of operation, construction, Torque equation of induction type single phase energy meter		Elastic transducer, Vibrating cylinder	Measurement of blood pressure-direct methods	
	SLO-2	Errors in measurement	rement Three phase energy meter D'Arsonval Galvanometer Reso		Resonant transducer.	Working of X- ray Instrumentation	
S-3	SLO-1	Kelvin's Double Bridge, measurement of Low value of Resistances	Creeping adjustments, testing of energy meters	General principle and working of Hall effect sensors	Measurement of Flow: Flow visualization from Pitot-static tube, Yaw tube.	Applications of X- ray Instrumentation	
3-3	SLO-2	Wheat -stone Bridge, measurement of Medium value of Resistances.	Calibration of energy meter using direct loading.	Encoder-Laser based methods.	Positive displacement method, Obstruction methods.	Working and applications of Electrocardiograph (ECG)	
S 4-5		Lab 1: Measurement of R, L and C using bridge circuit	Lab 4: Measurement of power and energy	Lab 7: Measurement of liquid flow rate	Lab 10: Measurement of water level using capacitive Transducer	Lab 13: Real time monitoring of ECG wave analysis using simulator	
S-6	SLO-1	Maxwell's Inductance Bridge, Measuring Unknown value of Inductance	Digital energy meter		Drag effect methods, hot-wire anemometers.	Block diagram of data acquisition system	
3-0	SLO-2	Anderson's Bridge, measurement of Un known value of Inductance.	Net metering	Digital storage oscilloscope	Measuring Devices: Vacuum and sound	Block diagram of Signal conditioning	
S-7	SLO-1	Schering's Bridge measurement of Un known value of Capacitance.	Measurement of reactive power using wattmeter in single phase circuit.	Storage devices: Strip chart recorder	McLeod gauge, Knudsen gauge	Telemetry and working.	
3-1	SLO-2	Principle of operation of Thermal type instruments	Measurement of reactive power using wattmeter in Poly phase circuits	X-Y recorder	Diaphragm and ionization gauges	Respiratory instrumentation – Mechanism of respiration, spirometry	

		Principle of operation, construction, working of single phase power factor meter	Measurement of Volt Ampere reactive power using VAR meter	Principle of operation and applications of Phase sequence indicator	Motion measurement-Fundamentals standards.	Working of different types of Pacemakers	
S-8	SLO-2	Three phase power factor meter	Principle of operation, and construction of Maximum demand indicator	Principle of operation and applications of Display devices: LED, LCD, Dot matrix display	Temperature measurement using Liquid in glass thermometers	Applications of Pacemakers	
S	SLO-1	Lab 2: Power factor measurement	Lab 5: Measurement of power and energy	Lab 8: Measurement of harmonics using	Lab 11: Measurement of temperature to estimate the response time using	Lab 14: Study of Pacemaker Module	
9-10	SLO-2		Lab 5. Measurement of power and energy	Power quality analyser.	temperature measuring instruments	Lab 14. Study of Lacemaker Module	
S-11	SLO-1	Solving Problems in error measurements	Solving Problems in single phase energy meter	Solving Problems in Phase sequence indicator.		Interfacing instruments –General purpose interfacing bus (GPIB)	
3-11	SLO-2	Solving Problems in bridge circuits	Solving Problems in three phase energy meter	Solving Problems in Galvanometer	Solving Problems in Pressure measurement.	Working of GPIB Hardware Components	
S-12	3L0-1	Principle of operation, construction, Torque equation of Dynamometer type instruments	Frequency meters, Electrical resonance type	Measurement of LCD screen size		GPIB / SCPI Programming Elements and specifications	
3-12	SLO-2	Principle of operation of Rectifier type instruments	Frequency meters - Mechanical Resonance Type.	Operation of an analogue actuator: the DC Servo motor	Properties of analogue sensors for temperature	Interfacing instruments –USB	
S-13	SLU-1	Principle of operation and applications of Digital voltmeter.	Principle of operation of spectrum analyser	Radio frequency identification (RFID) reader	Properties of analogue sensors for pressure	Instrumentation for medical imaging	
3-13	SI 0-2	Principle of operation and applications of Digital Multimeter.	Principle of operation of Harmonic analyser	Data loggers	Laser based measurement of liquid temperature	Instrumentation for Therapeutic Devices	
S 14-15	SLO-1 SLO-2	Lab 3: Demo on Universal bridge	Lab 6: Demo on Frequency meter	Lab 9: Identification of phase sequence using Synchroscope	Lab 12: Study of temperature and pressure sensor	Lab 15: Analysis of Instrumentation for medical imaging	

Learning Resources	<ol> <li>Ernest O Doebelin, Dhanesh N Manik, Measurements Systems Application and Design, 5th ed., McGra</li> <li>Sawhney A. K, A Course in Electrical and electronic Measurement and Instrumentation, Dhanpat Rai &amp;</li> <li>Rajendra Prasad, Electrical Measurements &amp; Measuring instruments, 10th ed., Khanna Publishers, 198</li> </ol>	
-----------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--

Learning Ass	sessment													
	Bloom's Continuous Learning Assessment (100% weightage)										Final Examination			
	Level of Thinking	CLA –	1 (20%)	CLA –	2 (30%)	CLA –	3 (30%)	CLA – 4	l (20%)#		ammauon			
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%			
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%			
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%			
	Total	100	) %	10	0%	10	0 %	10	0 %	10	0 %			

Course Designers											
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts									
1. Mr. A. Thiyagarajan, TANGEDCO, athiyagu3177@yahoo.com.	1. Dr. S. Senthilkumar, NIT, Trichy, skumar@nitt.edu	1. Ms. C. Anuradha, SRMIST									
2. Mr. Muralikrishna, National Instruments, emkkrishnan@gmail.com	2. Dr. Bindu, Govt. College of Engineering, Vayanadu, Kerala, bgr100@gmail.com	2. Ms. S. Vijayalakshmi, SRMIST									

Course	405500007	Course		Course	-		L	Т	Ρ	С
Code	18EEC208T	Name	GENERATION, TRANSMISSION AND DISTRIBUTION	Category	С	Professional Core	3	0	0	3

Pre-requisite		Co-requisite		Progressive	
Courses		Courses		Courses	
Course Offering D	Department	Electrical and Electronics Engineering	Data Book / Codes/Standards	Nil	

Course Learning Rationale (CLR): The purpose of learning this course is to:				ng					I	Progr	ram L	earn	ing O	utcor	nes (	PLO)				
CLR-1: Utilize the basics of electric	CLR-1: Utilize the basics of electric power generation, transmission and distribution						2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Solve the various transmiss	sion line parameters for single and three phase transmission system				1 [							/							-	
CLR-3 : Analyze the performance o	f transmission line and to learn the different voltage compensation techniques	Ê							СĻ			bility								
CLR-4: Utilize insulators, cables an	d estimate the string efficiency	(Bloom)	(%)	t (%)		dge		it	sea			istainability		Work		8				
CLR-5 : Analyze the basics of subs	tation components and DC distribution systems	(B)	ency	nent		wlea	~	Development	, Re	ge		Susta		۲		Finance	p			
CLR-6 : Create overall structure of p	power system starting from generation to power transmission and distribution	hinking	Proficie	Attainme		Хnо	Analysis	velo	Design,	Usage	Culture	∞		Team	ation	& Fi	aming			
		Thin				ring	Ana	& De	De	Tool	& Cu	nent		ంగ	unicat	Mgt.	Le			
• • • •	At the end of this course, learners will be able to:	Level of	Expected	Expected		Engineering Knowledge	Problem	Design {	Analysis,	Modern	Society	Environ	Ethics	Individual	Commui	Project I	Life Long	PS0-1		PSO-3
CLO-1: Identify the layout of variou	s energy sources and its economics of power generation	2	80	75	1 [	H	M	М	-	-	-	M	-	-	-	-	-	H	M	H
CLO-2: Calculate the line parameter	er for single and multi-phase power transmission system	3	80	75		Н	Н	М	М	М	-	М	1	-	-	-	-	М	М	М
	of various types of transmission lines	3	80	75	1 [	Н	Н	Н	М	-	-	-	-	М	М	-	-	Н	М	М
CLO-4 : Acquire knowledge on insu	lators, cables and evaluate stress and sag	3	80	75		Η	М	Н	М	-	-	-	-	-	-	-	-	Н	Н	М
	ponents and compute the DC distribution systems	3	80	75		Η	Н	М	М	-	-	-	-	-	-	-	-	H	М	Μ
CLO-6 : Design a power system usi	6: Design a power system using components like generators, transmission lines and distributors			75		Η	H	М	М	М	-	M	-	М	M	-	-	H	Μ	Μ

	ration iour)	9	9	9	9	9
S-1	SLO-1	Sources of energy	Calculate Resistance in a single-phase transmission line	Analyze performance of short line	Classify insulators for transmission and distribution purpose	Classification, major components of substations, Bus-bar arrangements
3-1	SLO-2	Structure of power system	Calculate Inductance in a single-phase transmission line	Analyze performance of medium transmission line (end condenser method)	Voltage distribution in insulator string	Substation bus schemes- single bus, double bus with double breaker
S-2	SLO-1	Basic layout of PV power generation Calculate Capacitance in a single-phase for medium line by end condenser method Imp.		Improvement of string efficiency	Double bus with single breaker	
5-2	SLO-2	Basic layout of wind power generation	Calculate Inductance and capacitance of three phase transmission lines	Analyze Performance of medium line using T method	Calculation of voltage distribution and string efficiency	Main and transfer bus schemes
	SLO-1	Basic layout of Ocean Thermal Energy Conversion (OTEC)	Calculate Inductance and capacitance in a Symmetrically spaced conductor	Calculation of efficiency and regulation of voltage for medium line by T method	Testing of insulators	Double bus-bar scheme with bypass isolators
S-3	SLO-2	Types of OTEC	Calculate inductance and capacitance in an Unsymmetrical spaced conductor (transposed)	Analyze Performance of medium line using $\pi$ method	Construction features of LT and HT cables, Insulation resistance	Introduction to substation earthing
S-4	SLO-1	Basic layout of Biomass power plant	Calculate inductance of Single circuit lines	Calculation of efficiency and regulation of voltage for medium line by $\pi$ method	Calculate Capacitance, dielectric stress	Substation safety
3-4	SLO-2	Load curve & Load duration curve	Calculate capacitance of Single circuit lines	Analyze Performance of long line using Rigorous method	Grading cables	Qualitative treatment to neutral grounding
S-5	SLO-1	Calculation of total power generation	Calculate inductance in double circuit lines	Ferranti effect – surge impedance	Fault in underground cables	Feeders, service mains and distributors
3-3	SLO-2	Load, demand and diversity factors	Calculate capacitance in double circuit lines	Attenuation constant and phase constant	Location of fault in underground cables	DC Distribution

S-6	SLO-1	Plant capacity and plant use factors	bunalea conauciors	Real power flow in transmission lines	Tan $\delta$ and power loss	Types of DC distributors
3-0	SLO-2	Calculation of Plant capacity and plant use factors	Calculate capacitance in Stranded and bundled conductors	Reactive power flow in transmission lines		Quantitative analysis of radial distribution fed at one end
S-7	SLO-1	Choice of type of generation, choice of size and number of units	Application of self GMD	8		Quantitative analysis of radial distribution fed at both the ends
3-1	SLO-2	Cost of energy generated		Receiving end power circle diagrams for finding the maximum power transfer		Quantitative analysis of Ring main distribution
S-8	SLO-1	Tariffs	Skin and Proximity effect	Series compensation		Design of rural distribution, planning and design of town electrification schemes
3-0	SLO-2	21	,	Shunt compensation	heiahts	Kelvin's law for the design of feeders and limitations
S-9	SLO-1	Transmission systems	Implementation of distribution system using software	Seminar Presentations on ABCD constants	Effect of wind on overhead transmission line	Smart grid
3-9	SLO-2		Implementation of distribution system using software		Effect of ice loading on overhead transmission line	Power system restructuring

Learning Resources
Resources

 D.P. Kothari, I.J. Nagrath Power System Engineering Mc Graw-Hill Publishing company limited, New Delhi, 2nd ed., 2008 2. C. L. Wadwa, Electric Power Systems, 7th ed., New Age International Publishers, 2016

З. Luces M. Fualkar berry, Walter Coffer Electrical Power Distribution and Transmission, Pearson Education, 2007

S.N.Singh, Electric power generation, transmission and distribution, 2nd ed., PHI, 2011

S.N.Singh, Electric power generation, transmission and distribution, 2nd et 5. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science

Learning As				Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examination	- (EOO( waighteen)
	Bloom's Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	4 (10%)#	Final Examination	n (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	10	0 %	100	0 %	10	0 %	10	0 %	10	0 %
# CLA - 4 ca	n be from any combination	of these: Assignme	ents, Seminars, Tec	h Talks, Mini-Projec	ts, Case-Studies, Se	If-Study, MOOCs,	Certifications, Conf. I	Paper etc.,			
Course Desi	gners										
Experts from	Industry			Ex	operts from Higher T	echnical Institution	6		Internal	Experts	
1 Dr Bhaska	arsahu. Schneider Electric	l td_bhaskar sahu@	Dschneider-electric	com 1	Dr. K. S. Swarup, II	TM_ksswarun@iitn	n ac isn		1 Mr P	Suresh, SRMIST	

1. Dr. Bhaskarsahu, Schneider Electric Ltd, bhaskar.sahu@schneider-electric.com	1. Dr. K. S. Swarup, IITM, ksswarup@iitm.ac.isn	1. Mr. P. Suresh, SRMIST
2. Dr. P. Dharmalingam, Ensave Pvt Ltd, pdlingam@gmail.com	2.Dr. R. Ramesh, Anna University, rramesh@annauniv.edu	2. Dr. D. Sattianadan, SRMIST



Course Code	18EC	C102J	Course Name		ELEC	TRONIC DEVICES		Cou Cate			С				Pro	ofessio	onal C	Core					L 3	•	P 2
Pre-requ Cours		ES101J			Co-requisite Courses	Nil			Prog Co	ressi urses		8ECC	201J												
Course O	ffering Depa	artment	Electro	nics and Commu	inication Enginee	ring Data Book	c / Codes/Standards	٨	Vil																
Course Le	earning Rati	ionale (CLF	R): The pur	pose of learning	this course is to:				Le	arnin	ıg					Prog	ram L	_earni	ing O	utcom	nes (F	PLO)			
						unction is formed and its			1	2	3		1	2 3	4	5	6	7	8	9	10	11	12	13	14
	Discuss the Describe the Describe the Use modern	basic chara e basic stru e basic stru n engineerin	acteristics of cture, operati cture, operati g tools such	several other typ ion and characte ion and characte	es of diodes that ristics of BJT, an ristics of MOSFE arry out design ex		c applications	r.	Thinking (Bloom)	Expected Proficiency (%)	d Attainment (%)		Ingineering Knowledge	1 Analysis		Tool Usage	& Culture	nent & Sustainability		al & Team Work	nication	dgt. & Finance	ife Long Learning	Professional Achievement	z: Project Management
Course Le	earning Out	comes (CL	<b>O):</b> At the e	end of this course	e, learners will be	able to:			Level of	Expecte	Expected		Enginee	Problem .	Analysis,	Modem	Society	Environment &	Ethics	Individual	Communication	Project Mgt.	Life Lon	5	PSO – 2: Pro Techniques
CLO-1 :	Understand	the operati	on, character	ristics, parameter	rs and specification	ons of semiconductor dia	odes and special diodes		1	90	80		Ħ		-	-	-	-	-	-	-	-	M	-	-
CLO-2 :					r diodes and spe				2	80	75		-		-	-	-	-	-	-	-	-	М	-	-
CLO-3 :	Review bipc and switchir		or constructio	on, operation, cha	aracteristics and p	parameters, as well as its	s application in amplificat	ion	1	90	80		н	-   -	-	-	-	-	-	-	-	-	М	-	-
CLO-4 :	Review field amplification			uction, operation,	characteristics a	nd parameters, as well a	as its application in		1	80	75		н		-	-	-	-	-	-	-	-	М	-	L
CLO-5 :				measurements t	o understand the	operating characteristic	s of the device / circuit.		3	80	75		-		-	Н	-	-	-	-	-	-	-	L	L
CLO-6 :							ng tools such as PSPICE		3	90	75		-		-	Н	-	-	L	Н	М	-	М	-	-
	-					<b>0</b> : ''						_						I							

Du	ration	Semiconductor Diodes	Diode Circuits	Special Diodes	Bipolar Junction Transistors	MOS Field-Effect Transistors
(h	iour)	15	15	15	15	15
S-1	SLO-1	Basic semiconductor theory: Intrinsic & extrinsic semiconductors	HWR operation, Efficiency and ripple factor	Backward diode	Physical structure	Physical structure
5-1	SLO-2	Current flow in semiconductors	Problem solving	Varactor diode	Device operation of BJT	Device operation of E-MOSFET & D- MOSFET
S-2	SLO-1	PN junction theory: Equilibrium PN junction	Center-Tapped Transformer FWR operation, Efficiency and ripple factor	Step recovery diode	Current-Voltage characteristics of CE BJT configuration	I-V characteristics of E-MOSFET
5-2	SLO-2	Forward biased PN junction Problem solving		Point-contact diode	Current-Voltage characteristics of CE BJT configuration	Problem solving
S-3	SLO-1	Reverse biased PN junction	Bridge FWR operation, Efficiency and ripple factor	Metal-semiconductor junction: Structure, Energy band diagram	Current-Voltage characteristics of CB BJT configuration	Derive drain current
3-3	SLO-2	Relation between Current and Voltage	Problem solving	Forward & Reverse Characteristics of Schottky Diode	Current-Voltage characteristics of CB BJT configuration	Problem solving
S 4-5	SLO-1 SLO-2	Lab 1: PN Junction Diode Characteristics	Lab 4: Diode clipping and clamping circuits	Lab 7: Series and Shunt Regulators	Lab 10: BJT and MOSFET Switching Circuits	Lab 13: Repeat Experiments
S-6	SLO-1	Calculate depletion width	Filters: Inductor & Capacitor Filters	Tunnel Diode	Current-Voltage characteristics of CC BJT configuration	Derive transconductance
3-0	SLO-2	Calculate barrier potential	Problem solving	Tunnel Diode	Current-Voltage characteristics of CC BJT configuration	Problem solving
S-7	SLO-1	Derive diode current equation	Filters: LC & CLC Filters	Gunn Diode	BJT as an amplifier	CMOS FET

	SLO-2	Derive diode current equation	Problem solving	Gunn Diode	BJT as a switch	MOSFET as an amplifier
S-8	SLO-1	Effect of Capacitance in PN junction: Transition Capacitance	Diode Clippers	IMPATT Diode	BJT circuit models - h-parameter	MOSFET as a switch
3-0	SLO-2	Diffusion Capacitance	Problem solving	IMPATT Diode	BJT circuit models - hybrid- $\pi$ parameter	Problem solving
S 9-10	SLO-1 SLO-2	Lab 2: Zener diode characteristics	Lab 5: BJT Characteristics	Lab 8: MOSFET Characteristics	Lab 11: Photoconductive Cell, LED, and Solar Cell Characteristics	Lab-14: Model Examination
S-11	SLO-1	Energy band structure of PN Junction Diode	Diode Clampers	PIN Diode	BJT biasing circuits and stability analysis: Base bias and emitter bias	Biasing Circuits for MOSFET: Gate Bias
5-11	SLO-2	Ideal diode and its current-voltage characteristics	Problem solving	PIN Photodiode	Problem solving	Problem Solving
6.40	SLO-1	Terminal characteristics & parameters	Voltage Multipliers	Avalanche photodiode	Voltage-divider bias	Self-bias
S-12	SLO-2	Diode modeling	Zener diode: Characteristics, breakdown mechanisms	Laser diode	Problem solving	Problem Solving
S-13	SLO-1	DC load line and analysis	Zener resistances and temperature effects Zener diode as voltage regulator	Problem solving	Collector-feedback bias	Voltage-divider bias
3-13	SLO-2	Problem solving	Problem solving	Problem solving	Problem solving	Problem Solving
S 14-15	SLO-1 SLO-2	Lab 3: Diode rectifier circuits	Lab 6: BJT Biasing Circuits	Lab 9: MOSFET Biasing Circuits	Lab 12: Simulation experiments using PSPICE	Lab 15: End-Semester Practical Examination

		1.	David A. Bell, Electronic Devices and Circuits, 5th ed., Oxford University Press, 2015	5.	Robert L. Boylestad, Louis Nashelsky, Electronic Devices and Circuit Theory, 11th ed., Pearson Education, 2013
Learning		2.	Donald Neamen, Electronic Circuits: Analysis and Design, 3rd ed., McGraw-Hill Education, 2011	6.	Muhammad Rashid, Microelectronic Circuits: Analysis & Design, 2 nd ed., Cengage Learning, 2010
Resource	s	З.	Adel S. Sedra, Kenneth C. Smith, Microelectronic Circuits: Theory and Applications, OUP, 2014	7.	Muhammed H Rashid, Introduction to PSpice using OrCAD for circuits and electronics, 3rd ed., Pearson, 2004
		4.	Thomas L. Floyd, Electronic Devices", 9th ed., Pearson Education, 2013	8.	Laboratory Manual, Department of ECE, SRM University

Learning As	sessment													
	Bloom's		Continuous Learning Assessment (50% weightage)											
	Level of Thinking	CLA – 1	1 (10%)	CLA – 2	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	<ul> <li>Final Examination (50% weightag</li> </ul>				
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%			
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%			
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%			
	Total	100	) %	100	)%	100	0 %	100	)%	100 %				

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Mr. Manikandan AVM, SRMIST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	2. Dr. Diwakar R Marur, SRMIST

Course Code	Code         18ECC103J         Name         DIGITAL ELECTRONIC PRINCIPLES					ourse tegory	,	С				Prof	ession	al Co	re				L 3	T 0	P 2	C 4
Pre-requ Cours			Co-requisite Courses				gress ourse		18ECC20	3J												
Course Of	ffering Department	Electro	nics and Communication Engineering	Data Book / Codes/Stand	ards	Nil																
Course Le	earning Rationale (CLF	R): The pur	pose of learning this course is to:			L	earnir	ıg					Progra	m Le	earning	Outco	mes (	PLO)				
CLR-1 :	Understand binary code	es, digital arii	thmetic operations and able to simplify Boo	lean logic expressions		1	2	3	1	2	3	4	5	6	7 8	9	10	11	12	13	14	15
CLR-1 :       Understand binary codes, digital arithmetic operations and able to simplify Boolean logic expressions         CLR-2 :       Describe how basic TTL and CMOS gates operate at the component level         CLR-3 :       Able to design simple combinational logics using basic gates and MSI circuits         CLR-4 :       Familiarize with basic sequential logic components: flip-flops, registers, counters and their usage, and able to design and analyze sequential logic circuits and Finite State Machines.         CLR-5 :       Know how to implement logic circuits using PLDs.         CLR-6 :       Use modem engineering tools such as PSPICE / Logisim to carry out design experiments and gain experience with instruments and methods used by technicians and electronic engineers         Course Learning Outcomes (CLO):       At the end of this course, learners will be able to:					Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO-1: Professional Achievement	PSO – 2: Project Management Techniques	PSO – 3: Analyze & Research	
			he fundamental concepts and techniques u			1	90	75	Н	-	-	-	-	-		-	-	-	М	-	-	-
CLO-2 :			various logic families and able to use Integ			1	80	70	Н	-	-	-	-	-		-	-	-	М	-	-	-
CLO-3 :			publeshoot various combinational logic circu			2,3	90	75		М	Н	-	Н	-		-	-	-	М	-	-	-
CLO-4 :			publeshoot various clocked sequential logic	circuits.		2,3	90	75		M	Н	-	Н	-		-	-	-	М	-	-	-
CLO-5 :         Analyze, design and implement various digital logic circuits using PLDs           CLO-6 :         Solve specific design problem, which after completion will be verified using modern engineering tools such as PSPICE / Logisim				2,3 3	80 90	75 75	-	M M	H H	-	H H	-	- L	- H	- M	- L	- M	М	-	L		

	ration	Binary Codes, Digital Arithmetic and Simplification of Boolean Functions	Logic Families	Combinational Systems	Sequential Systems	Memory and Programmable Logic
ų	iour)	15	15	15	15	15
S-1	SLO-1	Binary Codes, Digital Arithmetic and Simplification of Boolean Functions	Introduction	Binary arithmetic units	Flip-flop and Latch: SR latch,	RAM Memory decoding
0-1	SLO-2	Error detecting codes	TTL Logic Family	Adder	JK flip-flop, T flip-flop, D flip-flop	ROM
S-2	SLO-1	Error correcting code	Totem-pole TTL	Design of Half adder	Master-slave RS flip-flop	Programmable Logic Devices (PLDs): Basic concepts
0-2	SLO-2	Hamming Code	open-collector and tristate TTL	Design of Full adder	Master-slave JK flip-flop	PROM
S-3	SLO-1	Arithmetic number representation	Schottkey TTL, standard TTL characteristics	Subtractor	Registers & Counters	PROM as PLD
0-5	SLO-2	Binary arithmetic	Metal Oxide Semiconductor logic families	Design subtractor using logic gates	Shift registers (SISO, SIPO, PISO, PIPO)	Programmable Array Logic (PAL)
S 4-5	SLO-1 SLO-2	LAB 1: Study of logic gates	LAB 4: Design and implement encoder and decoder using logic gates	LAB 7: Implement combinational logic functions using standard ICs	LAB 10: Design and implement Synchronous Counters	LAB 13: Construct combinational circuit using Logisim
	SLO-1	Hexadecimal arithmetic	N-MOS	n-bit parallel adder & subtractor	Universal shift register	Programmable Array Logic (PAL)
5-6	S-6 SLO-2 Hexadecimal arithmetic		P-MOS	look ahead carry generator	Counters: Asynchronous/Ripple counters	Programmable Logic Array (PLA)

S-7	SLO-1	BCD arithmetic simplification	CMOS logic circuits	Decoder	Synchronous counters, Modulus-n Counter	Programmable Logic Array (PLA)
5-1	SLO-2	Minimization of Boolean Functions: Algebraic simplification	Characteristics of MOS logic	Encoder	Ring counter, Johnson counter	Design combinational circuits using PLD's
S-8	SLO-1	Problems on Algebraic simplification	Compare MOS logic circuits(CMOS) with TTL digital circuit	Multiplexer	Up-Down counter	Design combinational circuits using PLD's
0-0	SLO-2	Karnaugh map simplification	Electrical characteristics	Demultiplexer	Mealy and Moore model	Design combinational circuits using PLD's
S 9-10	SLO-1 SLO-2	LAB 2: Design and implement Adder and Subtractor using logic gates	LAB 5: Design and implement Multiplexer and Demultiplexer using logic gates	LAB 8: Verify characteristic table of flip- flops	LAB 11: Construct and verify shift registers	LAB 14: Model Practical Examination
S-11	SLO-1	Problems on Karnaugh map simplification	Fan-out	Code converters	Synchronous (Clocked) sequential circuits	Design of combinational circuits using PLD's
5-11	SLO-2	Problems on Karnaugh map simplification	Propagation Delay	Magnitude comparators	Synchronous (Clocked) sequential circuits	Design sequential circuits using PLD's
6.40	SLO-1	Quine McCluskey	Power dissipation	Magnitude comparators	Synchronous (Clocked) sequential circuits	Design sequential circuits using PLD's
S-12	SLO-2	Tabulation method	Noise margin	Parity generators (Odd parity)	Analyze and design synchronous sequential circuits	Design sequential circuits using PLD's
S-13	SLO-1	Problems on Quine McCluskey or Tabulation method.	Supply voltage levels	Parity generators (Even parity)	State reduction	Design sequential circuits using PLD's
3-13	SLO-2	Exercise problems using Tabulation method	Operational voltage levels	Implementation of combinational logic by standard IC's.	State assignment	Design sequential circuits using PLD's
S 14-15	SLO-1 SLO-2	Lab 3: Design and Implement 2-bit Magnitude Comparator using logic gates	LAB-6: Design and implement code converters using logic gates	LAB 9: Construct and verify 4-bit ripple counter, Mod-10/Mod-12 ripple counters	Lab 12: Construct mini project work	LAB 15: University Practical Exam

Learning Resources	1. 2. 3.	Morris Mano M, Michael D. Ciletti, Digital Design with an Introduction to the Verilog HDL, 5 th ed., Pearson Education, 2014 Charles H Roth (Jr), Larry L. Kinney, Fundamentals of Logic Design, 5 th ed., Cengage Learning India Edition, 2010 Thomas L. Floyd, Digital Fundamentals, 10 th ed., Pearson Education, 2013	4. 5. 6.	Ronald J. Tocci, Digital System Principles and Applications, 10 th ed., Pearson Education, 2009 Donald P Leach, Albert Paul Malvino, Goutam Saha, Digital Principles and Applications, 6 th ed., Tata- Mcgraw Hill, 2008 LAB MANUAL, Department of ECE, SRM University
-----------------------	----------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Learning Assessment
---------------------

	Bloom's		Continuous Learning Assessment (50% weightage)											
	Level of Thinking	CLA – 1	1 (10%)	CLA – 2	2 (15%)	CLA – 3	3 (15%)	CLA – 4	(10%)#		i (50% weightage)			
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
r. Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%			
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%			
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%			
	Total	100	) %	100	) %	100	) %	100	) %	100 %				

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Mr. Viswanathan B, SRMIST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	

Course Code	18ECC104T	Course Name	SIGNALS AND S	YSTEMS	Course Category	С	Professional Core	L 3	T 1	P 0	C 4
Pre-requis Courses	186651011		Co-requisite Courses		Progre Cour		18ECC204J				
Course Offe	ring Department	Electronic	s and Communication Engineering	Data Book / Codes/Standards	Nil						

Course Learning Rationale (CLR): The purpose of learning this course is to:	L	earni	ng					Prog	ram L	earni	ing O	utcor	nes (	PLO)				
CLR-1: Understand the fundamentals of signals, systems and their classification	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Learn the methods of representing the continuous signal and its properties										~							ent	÷
CLR-3: Educate about system modeling through Laplace transform and Convolution integral for continuous time systems	-	_					ç			bility							eme	earch
CLR-4 : Learn about discrete time signals and its properties	(moc	(%)	(%)	ge		at	sea			ustainability		Work		8			nag	Res
CLR-5: Understand the concept of Z-Transform for the analysis of DT system	(Blo	oficiency	Attainment	Knowledge		Development	Re	ge		uste				Finance	g	sional	Mana	8
CLR-6: Learn about continuous and discrete signals and its properties	hinking	oficie	ainn	ê.	lysis	/elo	esign,	Usage	Culture	s S		Team	ы	& Fii	earning	essi	ject	alyze
	Thin	5		Bui	Analysis			Tool	& Cu	nent		∞ŏ	ication	Mgt. 8		Profe	: Pro	An
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering	Problem	Design &	Analysis,	Modern ⁻	Society 8	Environn	Ethics	Individual	Commur	Project <b>N</b>	Life Long	PSO-1: Achiever	PSO – 2: Techniqu	PSO – 3
CLO-1 : Acquire knowledge of various classifications of Signals and Systems	2	85	65	Н	М	-	М	-	-	-	-	-	-	-	-	Μ	Ĥ	М
CLO-2: Analyze Periodic and Aperiodic for Continuous time Signals using Fourier series and Fourier Transform	3	85	65	М	Н	М	Н	-	-	-	-	-	-	-	-	М	-	Н
CLO-3: Analyze and characterize the Continuous time system through Laplace transform and Convolution integral.	3	85	65	М	Н	М	Н	-	-	-	-	-	-	-	-	М	-	Н
CLO-4: Analyze and characterize the Discrete time signals and system through DTFT, Convolution sum	3	85	65	Н	Н	М	М	-	-	-	-	-	-	-	-	М	-	Н
CLO-5: Analyze and characterize the Discrete time system using Z transform	2	85	65	Н	М	Н	М	-	-	-	-	-	-	-	-	М	-	Н
CLO-6 : Understand the properties and modeling of continuous and discrete time signals	3	85	65	Н	Н	М	М	-	-	-	-	-	-	-	-	М	-	Н

		Classification of Signals and Systems	Analysis of Continuous Time Signals	Analysis of LTI CT System	Analysis of DT Signals and Systems	Analysis of LTI DT System using Z-Transform
Durati	ion (hour)	12	12	12	12	12
	SLO-1	Introduction to signals and systems	Introduction to Fourier series	System modeling	Representation of sequences	Z transform – introduction
S-1	SLO-2	Requirements of signal and system analysis in communication	Representation of Continuous time Periodic signals	Description of differential eduations	Discrete Time Fourier Transform (DTFT) – Existence	Region of convergence of finite duration sequences-properties.
S-2	SLO-1	Continuous time signals (CT signals)	Fourier series: Trigonometric representation	Solution of Differential equation using classical method	DTFT of standard signals	Unilateral and bilateral z transforms
3-2	SLO-2	Discrete time signals (DT signals)	Fourier series: Trigonometric representation	Differential equation: Zero state response	Properties of DTFT	Properties of z transform
• •	SLO-1	Representation of signals: Step, Ramp, Pulse, Impulse	Fourier series: Cosine representation	Differential equation: Zero Input response	Problems on Properties of DTFT	Practice problems
S-3	SLO-2	Representation of signals: Sinusoidal, Exponential	Fourier series: Cosine representation	Total Response using classical method	Inverse DTFT	Practice problems
	SLO-1	Basic operation on the signals	Symmetry conditions	Impulse response	Impulse response of a system with DTFT	Relation between DTFT and Z transform
S-4	SLO-2	Problems on signal operations	Properties of Continuous time Fourier series	Step response	Frequency response of a system with DTFT	Practice problems
	SLO-1	Classification of CT and DT signals: Periodic & Aperiodic signals.	Practice problems on Fourier series		Step response	condition for causality in Z domain- Problems
S-5	SLO-2	Classification of CT and DT signals: Deterministic & Random signals.	Practice problems on Fourier series	Practice problems on solution of differential equation	Practice problems	condition for stability in Z domain-Problems
S-6	SLO-1	Energy signal	Gibb's Phenomenon	Convolution integral	Solution of linear constant coefficient difference equations	Inverse Z transform

	SLO-2	Power signal	Parseval's relation for power signals	Properties of convolution	Problems with and without Initial conditions	Power series expansion
S-7	SLO-1	Even & Odd signals	Power density spectrum,	Graphical method of convolution	Solution of difference equations using classical method	Inverse Z transform with Partial fraction
3-1	SLO-2	Even & Odd signals	Frequency spectrum.	Practice Problems	Zero input response , Zero state response, Total response	Inverse Z transform with Partial fraction
	SLO-1	CT systems and DT systems	Fourier transform: Introduction	Analysis using Laplace transform	Practice problems	Residue method
S-8	SLO-2	Classification of systems: Static & Dynamic	Representation of Continuous time signals	ROC and Convergence of Laplace Transform	Practice problems	Convolution method
S-9	SLO-1	Superposition theorem	Properties of Continuous time Fourier transform	Properties of Laplace transform		Analysis and characterization of DT system using Z-transform
3-9	SLO-2	i inear & Nonlinear system	Properties of Continuous time Fourier transform	Problems on properties of Laplace transform	Properties of the t	Analysis and characterization of DT system using Z-transform
S-10	SLO-1	Time-variant & Time-invariant system	Parseval's relation for energy signals	Inverse Laplace transform	Practice problems	Practice problems
0-10	SLO-2	Time-invariant system	Energy density spectrum	Problems	Convolution sum	Practice problems
S-11	SLO-1	Causal system	Practice problems on Fourier Transform	Analysis of LTI system using Laplace transform	Convolution properties	Realization of Discrete time system- Direct form I, Direct Form II
3-11	SLO-2	Noncausal system	Practice problems on Fourier Transform	Analysis LTI system using Laplace transform-Problems	Linear Convolution,-Tabulation method, Matrix method	Realization of Discrete time system- Parallel and cascade form
S-12	SLO-1	Stable & Unstable,LTI System	Practice problems on properties of Fourier Transform	Analysis LTI system using Fourier transform	Linear convolution-Graphical method	Practice problems
3-12	SLO-2	Unstable, LTI System	Practice problems on properties of Fourier Transform	Analysis LTI system using Fourier transform-Problems	Circular convolution-concentric circle method, matrix method	Practice problems

Learning Resources

Alan V Oppenheim, Ronald W. Schafer Signals & Systems, 2nd ed., Pearson Education, 2015
 P.Ramakrishna Rao, Shankar Prakriya, Signals & Systems, 2nd ed., McGraw Hill Education, 2015
 Simon Haykin, Barry Van Veen, Signals and Systems, 2nd ed., John Wiley & Sons Inc., 2007

 Lathi B.P, Linear Systems & Signals, 2nd ed., Oxford Press, 2009
 John G. Proakis, Manolakis, Digital Signal Processing, Principles, Algorithms and Applications, 4th ed., Pearson Education, 2007

Learning Asse	Learning Assessment Continuous Learning Assessment (50% weightage)														
	Bloom's			Final Examination	n (50% weightage)										
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	l (10%)#		n (50% weightage)				
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice				
Level 1	Remember	40 %		30 %		30 %		30 %		30%					
Level	Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-				
Level 2	Apply	40 %		40 %		40 %		40 %	-	40%					
Leverz	Analyze	40 /0	-	40 /0	-	40 /0	-	40 /0	-	4070	-				
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%					
Level 5	Create	20 /0	-	30 %	-	30 %	-	30 %	-	30%	-				
	Total 100 % 100 % 100 % 100 %							0 %	100 %						

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Dr. S. Dhanalakshmi , SRM IST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	

Course Code	18ECC105T	Course Name	ELECTROMAGNETICS AND	TRANSMISSION LINES	Course Category	С	Professional Core	L 3	T 0	P 0	C 3
Pre-requisi	ite		Co-requisite		Progress	sive	1050000T				
Courses	18EES101J, 18	BPYB101J	Courses		Course	es 1	18ECC206T				
Course Offer	ring Department	Electronic	s and Communication Engineering	Data Book / Codes/Standa	rds Clark's Tab	ble, IS	: 456-2000				

Course L	earning Rationale (CLR): The purpose of learning this course is to:	L	earniı	ng	Program Learning Outcomes (PLO)														
CLR-1 :	Gain knowledge on the basic concepts and insights of Electric field	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2 :	Gain knowledge on the basic concepts and insights of Magnetic field and Emphasize the significance of Maxwell's equations.																ent		
CLR-3 :	Interpret the wave propagation in guided waveguide.										~						vement	art	÷
CLR-4 :	Acquire the fundamental knowledge on Transmission Line Theory.	-	_					сł			oilit						Achiev	Management	Research
CLR-5 :	Acquire the knowledge on transmission line parameter calculation and impedance matching concepts.	(Bloom)	%)	(%)	ge		at	Research			inal		Work		8		Acl	nag	Res
CLR-6 :	Acquire knowledge on theoretical concepts and analysis techniques to find solutions for problems related to electromagnetic wave propagation and Transmission line Theory.	Thinking (Bl	Proficiency (%)	Attainment	Knowledge	Analysis	& Development	Design, Re	Tool Usage	Culture	t & Sustainability		Team W	tion	& Finance	Learning	Professional	roject Ma	Analyze &
	earning Outcomes (CLO): At the end of this course, learners will be able to:	Level of .	Expected	Expected	: Engineering	Problem	Design & D	Analysis, D	Modern Too	Society & C	Environment	Ethics	Individual &	Communication	Project Mgt.	Life Long L	÷	PSO – 2: P Techniques	PSO – 3: A
	Apply the concepts and knowledge to solve problems related to electric field.	2	80	70	М	Н													
CLO-2 :	Interpret and apply the concepts of Magnetic field and Maxwell's equations in the real world application.	2	80	70	Н	М													
CLO-3 :	Understand the phenomenon of guided wave propagation and its mode of propagation.	1	80	70	Н	М													
CLO-4 :	Realize the importance of transmission line theory applicable to low frequency transmission lines.	1	80	70	М	Н													
CLO-5 :	Solve transmission line parameter and impedance matching through analytical and graphical methods.	2	80	70	М	Н													
CLO-6 :	Understand how electromagnetic waves are generated using Maxwell's equations and how Transmission lines are used to transfer electromagnetic energy from one point to another with minimum losses over a wideband of frequencies.	2	80	70	М	Н										Н			L

	ration	Electrostatics	Magnetostatics and Maxwells Equations	Electromagnetic Waves and Waveguides	Transmission Line Theory	Transmission Line Calculator and Impedance Matching
ų	nour)	9	9	9	9	9
S-1	SLO-1	Introduction	Energy density in electrostatic field	Introduction	Transmission line parameters	Introduction
3-1	SLO-2	Rectangular co-ordinate	Problem discussion.	Waves in general	Transmission line parameters	Smith chart Introduction
S-2	SLO-1	Cylindrical & Spherical Co-ordinate	Biot savart law-Magnetic field intensity due to Infinite line charge	Plane wave in lossless dielectric	Transmission line equivalent circuit	Reflection coefficient, Standing wave ratio Input impedance calculation in smith chart
0-2	SLO-2	Review of vector calculus	H- due finite and semi finite line charge	Plane wave in free space	Explanation	Practice problems.
S-3	SLO-1	Coulomb's Law and field intensity	Ampere's circuital law& application: Infinite line current	Plane wave in good conductor	Transmission line equation derivation	Single stub matching Introduction
3-3	SLO-2	Problem based on coulomb's law	Infinite Sheet current	Problems based on plane waves in lossless, free space and good conductor	Problem discussion.	Procedure for single stub matching
S-4	SLO-1	Electric field due to continuous charge distributionConcept	Infinitely long coaxial Transmission line	Rectangular waveguide	Transmission line characteristics: lossless line	Problems solving in smith chart
3-4	SLO-2	Derivation of E due Infinite Line charge	Problem based on ACL.	Rectangular waveguide-Problems	Distortionless line.	Problems solving in smith chart
S-5	SLO-1	Electric field due to sheet charge	Magnetic flux density	Transverse Electric (TE) mode	Input impedance derivation	Impedance matching using Quarter wave transformer
0-0	SLO-2	Problem based on sheet charge	Problem based on magnetic field and flux.	Transverse Electric (TE) mode-problems	Problems for input impedance calculation.	Problems.

SRM Institute of Science & Technology – Academic Curricula (2018 Regulations) - Control copy 224

S-6	SLO-1	Electric field due to volume charge	Maxwell's equation for static field	Transverse Electric (TE) mode	Standing wave ratio	Single stub tuner
3-0	SLO-2	Electric flux density	Faraday's law	Transverse Electric (TE) mode-Problems	Calculation of standing wave ratio.	Problem discussion
S-7	SLO-1	Gauss law application-point charge	Transformer EMF	Wave propagation in guide	Reflection coefficient	Slotted Line (Impedance Measurement)
3-1	SLO-2	Electric flux due infinite line charge	Motional EMF	Problem discussion	Problem discussion.	Problem discussion
S-8	SLO-1	Electric flux due sheet charge	Displacement current.	Power Transmission	Shorted line, open circuited line	Transmission Lines as circuit Elements
3-0	SLO-2	Electric flux due coaxial cable	Maxwell's equation in time varying field	Calculation of Pavg and Ptotal	Matched line	Problem discussion
S-9	SLO-1	Relation between E&V	Time varying potential concepts	Power attenuation	Power calculations	Additional smith chart problem solving.
5-9	SLO-2	Electric dipole and flux lines	Time varying potential derivation.	Calculation of $\alpha TE$ and $\alpha TE$	Problem discussion.	Additional smith chart problem solving.

Learning As	earning Assessment														
	Bloom's		Final Examination	n (50% weightage)											
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	4 (10%)#		r (50% weightage)				
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice				
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-				
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-				
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-				
	Total	10	0 %	10	0%	10	0 %	10	0 %	100 %					

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Dr. P. Eswaran, SRMIST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	

Course Code	18ECC201J	Course Name		ANALOG E	FLECTRONIC CIRCUITS		S Course C Professional Core		Professional Core							L 3	T 0	P 2	C 4					
Pre-req Cour	18EUU1021			Co-requisite Courses	18ECC202J			gress ourse		18ECE20	1J													
Course C	ffering Department	Electro	nics and Comm	unication Engineer	ring Data Book / Codes/Standards		Nil																	
Course L	earning Rationale (CL	R): The put	rpose of learning	g this course is to:			Le	earni	ng					Progr	am L	earni	ing O	utcor	nes (F	PLO)				
CLR-1 :	Understand the opera						1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2 :	Understand the opera																							
CLR-3 :	to determine the frequ	ency of oscilla	ation		analyze the different RC and LC oscillator circ	uits										۲						/ement	ent	ch
CLR-4 :	Understand the opera						Ê	()					arch			abilit						chiev	gem	sear
CLR-5 :	Understand how matc current sources.	hed transistor	r characteristics	are used in the IC	design and to be able to design BJT and MOS	FET	Thinking (Bloom)	Proficiency (%)	Attainment (%)	wledge		Development	, Research	ge	0	Sustainability		n Work		Finance	b	onal Ac	Management	e & Research
CLR-6 :	Gain hands-on experie	ence to put th	eoretical concep	ots learned in the c	ourse to practice.		king	oficie	aim	Kno	Analysis	velo	Design,	Use	Culture	∞ŏ		& Team	.u	Ш Ж	arnir	essi	Project I es	alyzı
								ЧЪ		ring	Ana		De	Tool Usage	နှင	nent		8  6	nicat	Agt.	gLe	Prof	2: Pro	3: Analyze
Course L	earning Outcomes (C	LO): At the	end of this cours	se, learners will be	able to:		Level of	Expected	Expected	Enaineerina Knowledae	Problem	Design {	Analysis,	Modem	Society -	Environment	Ethics	Individual	Communication	Project Mgt. &	Life Long Learning	T	PSO – 2: Pr Techniques	PSO – 3
CLO-1 :					ions, and to Analyze the frequency response o rmine the bandwidth of the circuit.	f	2,3	80	70	L	М	Н	-	-	-	-	-	-	-	-	-	-	-	-
CLO-2 :					cations, and to Analyze the frequency response rmine the bandwidth of the circuit.	e of	2,3	80	70	L	М	Н	-	-	-	-	-	-	-	-	-	-	-	-
CLO-3 :		cteristics and	principles of fee		cuits and oscillator circuits to analyze and desi	gn	2,3	80	70	L	М	Н	-	-	-	-	-	-	-	-	-	-	-	-
CLO-4 :	type of power amplifie	r .	•		e maximum possible conversion efficiency of ea		2,3	80	70	L	М	Н	-	-	-	-	-	-	-	-	-	-	-	-
CLO-5 :			ocks that are use	ed in the design of	IC amplifiers, namely current mirrors and sour	ces	2,3	80	70	L	М	Н	-	-	-	-	-	-	-	-	-	-	-	-
CLO-6 :	Analyze and design an to compare experimer				nts, and take measurement of various analog o vsis.	circuits	3	90	80	-	-	Н	-	М	-	-	L	М	-	-	М	Н	L	-

Durati	ion (hour)	BJT Amplifiers	FET Amplifiers	Feedback amplifies & Oscillators	Oscillators & Power Amplifiers	IC Biasing & Amplifiers with Active Load
Durau	ion (nour)	15	15	15	15	15
S-1	SLO-1	Overview of DC analysis of BJT circuits		Basic feedback concepts, general feedback structure	Crystal Oscillators	BJT current sources: Cascode current source, Widlar current source
3-1	SLO-2	Overview of BJT models	Problem solving	Properties of negative feedback	Problem solving	Multi-transistor current source Problem solving
S-2	SLO-1	AC load line analysis	Graphical analysis, load lines, and small- signal models	Feedback Topologies: Voltage-Series & Current-Series feedback connections	Negative-resistance oscillator	FET current sources: 2-transistor MOSFET current source
3-2	SLO-2	Problem solving	Problem solving	Problem solving	Problem solving	Problem solving
S-3		AC analysis of Common-Emitter BJT amplifier config. using hybrid- $\pi$ model	AC analysis of Common-Source MOSFET amplifier configuration	Feedback Topologies: Voltage-Shunt & Current-Shunt feedback connections	Power Amplifiers: Definitions and amplifier types	FET current sources: Cascode current mirror and Wilson current mirror
0-5	SLO-2	Problem solving	Problem solving	Problem solving	Q point placement	Problem solving
S 4-5		Lab 1: Learning to design amplifier and oscillator circuits	Lab 4: Design & analyze differential amplifier with resistive load	Lab 7: Design and analyze RC oscillators		Lab 13: Design and analyze differential amplifier with active load
S-6	SLO-1	AC analysis of Common-Base BJT		Practical Feedback Amplifier Circuits	Maximum dissipation hyperbola	Analysis of CE BJT amplifier circuit with

roblem solving C analysis of Common-Collector BJT mplifier config. using hybrid-π model roblem solving Multi-stage amplifier configurations: CE - E, CE - CC amplifiers roblem solving ab 2: Design and analyze BJT amplifier	Problem solving AC analysis of Common-Drain MOSFET amplifier configuration Problem solving BiFET amplifier configuration Problem solving	Oscillators: Principles of Oscillation Types of Oscillators Audio Frequency Oscillators: RC Phase- Shift Oscillator	Class A amplifier	Problem solving Analysis of CS FET amplifier circuit with active load Problem solving
mplifier config. using hybrid-π model roblem solving fulti-stage amplifier configurations: CE - E, CE - CC amplifiers roblem solving	amplifier configuration Problem solving BiFET amplifier configuration	Types of Oscillators Audio Frequency Oscillators: RC Phase- Shift Oscillator	Class A amplifier Problem solving	active load Problem solving
Aulti-stage amplifier configurations: CE - E, CE - CC amplifiers roblem solving	BiFET amplifier configuration	Audio Frequency Oscillators: RC Phase- Shift Oscillator		
E, CE - CC amplifiers		Shift Oscillator	Class B and Class AB push-pull amplifiers	DC and small signal analysis of to to DIT
Ŭ	Problem solving			DC and small-signal analysis of basic BJT differential pairs
ah 2. Design and analyze B IT amplifior		Problem solving	Problem solving	Problem solving
onfigurations	Lab 5: Design and analyze negative feedback amplifier configurations		Lab 11: Design and analyze BJT CE amplifier with active load	Lab 14: Model Practical Examination
Iulti-stage amplifier configurations: CE - B, and CC - CC amplifiers	Low Frequency response analysis of a basic FET CS amplifier	Audio Frequency Oscillators: Wein Bridge Oscillator	Class C amplifiers	DC and small-signal analysis of basic FET differential pairs
Problem solving	Problem Solving	Problem Solving	Problem solving	Problem solving
ow Frequency response analysis of a asic BJT CE amplifier	High Frequency response analysis of a basic FET CS amplifier	Radio Frequency Oscillators: Hartley Oscillator	Class D and Class E amplifiers	Analysis of BJT differential amplifier with active load
Problem Solving	Problem Solving	Problem solving	Amplifier distortions	Problem solving
ligh Frequency response analysis of a asic BJT CE amplifier	Design problems in MOSFET amplifier configurations	Radio Frequency Oscillators: Colpitts &	IC Biasing & Amplifiers with Active Load: BJT current sources: 2- & 3-transistor current sources	Analysis of FET differential amplifier with active load
Problem Solving	Operational voltage levels	Problem solving	Problem solving	Problem solving
	Lab 6: Design and analyze MOSFET			Lab 15: End Semester Practical Examination
robl	: Design and analyze multistage		em Solving Operational voltage levels Problem solving : Design and analyze multistage Lab 6: Design and analyze MOSFET Lab 9: Classes of power amplifier	em Solving Operational voltage levels Problem solving Problem solving : Design and analyze multistage Lab 6: Design and analyze MOSFET Lab 9: Classes of power amplifier Lab 12: Design and analyze FET CS

 Donald Neamen, Electronic Circuits: Analysis and Design, 3rd ed., McGraw-Hill Education, 2011
 Muhammad Rashid, Microelectronic Circuits: Analysis & Design, 2nd ed., Cengage Learning, 2010
 Adel S. Sedra, Kenneth C. Smith, Microelectronic Circuits: Theory and Applications, OUP, 2014 Learning Resources

Education, 2013

6. Albert P. Malvino, David J. Bates, Electronic Principles, 8th ed., Tata McGraw Hill, 2015

Learning Asse	essment										
	Bloom's			Contir	nuous Learning Ass	essment (50% weigl	ntage)			Final Examination	o (E0%) weightego)
	Level of Thinking	CLA –	1 (10%)	CLA – 2	2 (15%)	CLA –	3 (15%)	CLA – 4	4 (10%)#		n (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
r. Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Total	100	0 %	100	)%	100	0%	10	0 %	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Mr. Manikandan AVM, SRMIST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	2. Dr. M. Sangeetha, SRMIST

Course Code	18ECC202J	Course Name	LINEAR IN	ITEGRATED CIRCUITS	Course Category	С	Professional Core	L 3	Т 0	P 2	C 4
Pre-requisite Courses	18ECC102J		Co-requisite Courses	18ECC201J	Progre Cour		Nil				
Course Offering	g Department	Electronics a	and Communication Engineer	ing Data Book / Codes/Standards	Nil						

Course Learning Rationale (CLR): The purpose of learning this course is to:		earni	ng						Prog	ram L	earn	ing O	utco	nes (	PLO)				
CLR-1: Study the basic principles, configurations and practical limitations of op-amp	1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Understand the various linear and non-linear applications of op-amp				1													ent		
CLR-3: Understand the operation and analysis of op-amp oscillators, single chip oscillators and frequency generators											~							at	÷
CLR-4: Identify the active filter types, filter response characteristics, filter parameters and IC voltage regulators.		_	_					rch			bility						Achievement .	eme	Research
CLR-5: Gain knowledge on data converter terminology, its performance parameters, and various circuit arrangements for A/D and D/A conversions.	Thinking (Bloom)	Proficiency (%)	Attainment (%)		wledge		Development	Research	ige	6	Sustainability		n Work		Finance	þ	nal	a	ъ
CLR-6: Gain hands-on experience to put theoretical concepts learned in the course to practice.	king	oficie	ainn		Ŷ.	lysis	/elo	Design,	ool Usage	Culture	∞ŏ		Team	on	& Fii	Learning	essi	Project es	Analyze
		Pro			ing	Analysis	De	Des	00	& Cu	ient			icati	Mgt. 8	lLee	Profe	Pro les	Ana
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of .	Expected	Expected		Engineering Knowledge	Problem	Design &	Analysis,	Modern 7	Society 8	Environment	Ethics	Individual &	Communication	Project N	Life Long	PS0-1:1	PSO – 2: Techniqu	PSO - 3
CLO-1: Infer the DC and AC characteristics of operational amplifiers and its effect on output and their compensation techniques	3	80	70	1	Н	М	Н	-	-	-	-	-	-	-	-	-	-	-	-
CLO-2: Elucidate and design the linear and non-linear applications of an opamp and special application ICs	3	85	75		М	М	Н	-	-	-	-	-	-	1	I	-	-	-	-
CLO-3: Explain and compare the working of multivibrators using special application IC 555 and general purpose opamp	3	75	70		L	М	Н	-	-	-	-	-	-	-	-	-	-	-	-
CLO-4 : Classify and comprehend the working principle of data converters and active filters	3	85	80	1	L	М	Н	-	-	-	-	-	-	-	-	-	-	-	-
CLO-5: Illustrate the function of application specific ICs such as Voltage regulators, PLL and its application in communication	3	85	75	1	L	М	Н	-	-	-	-	-	-	-	-	-	М	-	Н
CLO-6 : Analyze and design electronic circuits and systems using linear ICs, and take measurement of various analog circuits to compare experimental results in the laboratory with theoretical analysis	3	85	75			Н	Н	-	М	-	-	-	М	-	-	-	Н	L	-

Durati	on (hour)	15	15	15	15	15
S-1	SLO-1	Op-amp symbol, terminals, packages	Basic op-amp circuits: Inverting & Non- inverting voltage amplifiers	Waveform Generators: Sine-wave Generators - Design	Filters: Comparison between Passive and Active Networks	Digital to Analog Conversion: DAC Specifications
0-1	SLO-2	Op-amp-Specifications	Voltage follower	Implementation & Solving problems	Active Network Design	Solving problems
• •	SLO-1	Block diagram Representation of op-amp	Summing, scaling & averaging amplifiers,	Square Wave generators- Design	Filter Approximations	Weighted Resistor DAC
S-2	SLO-2	Ideal op-amp & practical op-amp - Open loop & closed loop configurations	AC amplifiers	Implementation & Solving problems	Design of LPF & Solving problems	Solving problems
S-3	SLO-1	DC performance characteristics of op-amp	Linear Applications: Instrumentation Amplifiers	Triangle wave generators	Design of HPF & Solving problems	R-2R Ladder DAC
3-3	SLO-2	Solving Problems	Instrumentation Amplifiers, Solving Problems	Saw-tooth Wave generators.	Design of BPF& Solving problems	Solving problems
S 4-5	SLO-1 SLO-2	Lab-1:Basic op-amp circuits	Lab 4: Comparators	Lab 7: Waveform generators: using op- amp & 555 Timer	Lab 10: Design of LPF, HPF, BPF and Band Reject Filters	Lab 13: Flash Type ADC
S-6	SLO-1	AC performance characteristics of op-amp	V-to-I Converters	IC 555 Timer: Circuit schematic	Design of Band Reject Filters	Inverted R-2R Ladder DAC
3-0	SLO-2	Solving Problems	I-to-V converters	Operation and its applications	Solving problems	Monolithic DAC
S-7	SLO-1	Frequency response	Differentiators	IC 555 Timer: Monostable operation	State Variable Filters – All Pass Filters,	Analog to Digital conversion: ADC specifications
0-1	SLO-2	Frequency response	Integrators	Applications & Solving problems	Solving problems	Solving problems

S-8	SLO-1	Frequency compensation	Non-linear Applications: Precision Rectifiers	IC 555 Timer: Astable operation	Switched Capacitor Filters.	Ramp Type ADC
3-0	SLO-2	Frequency compensation	Wave Shaping Circuits (Clipper and Clampers)	Applications & Solving problems	Solving problems	Solving problems
S 9-10	SLO-1 SLO-2	Lab 2: Integrators and Differentiators	Lab 5: Wave shaping circuits	Lab 8: Waveform generators: using op- amp & 555 Timer	Lab 11: IC Voltage regulators	Lab 14: Simulation experiments using EDA tools
S-11	SLO-1	Basic op-amp internal schematic	Log and Antilog Amplifiers,	PLL: Operation of the Basic PLL	Voltage Regulators: Basics of Voltage Regulator	Successive Approximation ADC
3-11	SLO-2	operations of blocks	Analog voltage multiplier circuit and its applications,	Closed loop analysis of PLL	Specifications and characteristic parameters	Solving problems
S-12	SLO-1	Basic op-amp internal schematic	Operational Trans-Conductance Amplifier (OTA)	Voltage Controlled Oscillator	Linear Voltage Regulators using Op-amp,	Dual Slope ADC
3-12	SLO-2	operations of blocks	Comparators : operation	Solving problems	IC Regulators (78xx, 79xx, LM 317, LM 337, 723),	Flash Type ADC,
S-13	SLO-1	Review of data sheet of an op-amp.	Comparators applications	PLL applications	Switching Regulators -operation	Solving problems on Flash Type ADC,
5-15	SLO-2	Solving Problems	Sample and Hold circuit.	Solving problems	Types	Monolithic ADC
S 14-15	SLO-1 SLO-2	Lab 3: Rectifiers	Lab 6: Waveform generators: using op- amp & 555 Timer	Lab 9: Design of LPF, HPF, BPF and Band Reject Filters	Lab 12: R-2R ladder DAC	Lab 15: Simulation experiments using EDA tools

Learning Resources	2. 3. 4.	Ramakant A. Gayakwad, Op-Amps and Linear Integrated Circuits, 4 th ed., Prentice Hall, 2000 David A. Bell, Operational Amplifiers and Linear ICs, 3 rd ed., OUP, 2013 Roy Choudhury, Shail Jain, Linear Integrated Circuits, 4 th ed., New Age International Publishers, 2014 Robert F. Coughlin, Frederick F. Driscoll, Operational-Amplifiers and Linear Integrated Circuits, 6 th ed., Prentice Hall, 2001 Sozia, Eraco, Decign with propertional amplifier and analog integrated circuits, McCraw Hill, 1007	7. [ 8. [ 9. [ 2	LABORATORY MANUAL, Department of ECE, SRM University David A Bell, Laboratory Manual for Operational Amplifiers & Linear ICs, 2 nd ed., D.A. Bell, 2001 David La Lond, Experiments in Principles of Electronic Devices and Circuits, Delmar Publishers, 1993 Muhammed H Rashid, Introduction to PSpice using OrCAD for circuits and electronics, 3 rd ed., Pearson, 2004 L. K. Maheshwari, M. M. S. Anand, Laboratory Experiments and PSPICE Simulations in Analog
	5.	Sergio Franco, Design with operational amplifier and analog integrated circuits, McGraw Hill, 1997		L. K. Maheshwari, M. M. S. Anand, Laboratory Experiments and PSPICE Simulations in Analog Electronics, PHI, 2006

Learning Assess	ment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Einal Examination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#		i (50% weiginage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level I	Understand	20%	20%	15%	15%	15%	15%	10%	15%	15%	15%
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level Z	Analyze	2070	2070	2070	2070	2078	2070	2070	2070	2070	2070
Laval 2	Evaluate	100/	100/	150/	150/	150/	150/	450/ 450/		15%	150/
Level 3	Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Total	100	) %	10	0 %	10	0 %	100	0%	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Mr. Manikandan AVM, SRMIST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	2. Dr. M. Sangeetha, SRMIST



Course Code	18MEC101T	Course Name	THE	ERMODYNAMICS	Course Category	С	Professional Core	L 3	T 1	P 0	C 4
Pre-requisite Courses	NII		Co-requisite Courses	Nil	Cou						
Course Offerin	ng Department	Mechanical Enginee	ring	Data Book / Codes/Stand	ards Steam t	ables and N	Mollier chart				

Course Learning Rationale (CLR):	The purpose of learning this course is to:	L	earnii	ng				I	Progr	am L	earni	ing O	utcor	nes (	PLO)			
CLR-1: Identify the fundamental co	ncepts of thermodynamic systems and energy transfer	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14 15
CLR-2: Utilize thermodynamic laws											У							
CLR-3: Utilize the concept of entrop	by and availability	Ê		-				arch			abilit							
CLR-4: Utilize the evaluation of pro	perties of pure substances and vapour power cycles	(Bloom)	y (%)	it (%	age		ent	esee			aina		Work		Ce			
CLR-5: Utilize the evaluation of pro	perties of gas and gas mixtures	g (B	Proficiency	Attainment (%)	Knowleage	s	Development	, Re	Usage	Θ	Sustainability				inance	ning		
CLR-6 : Utilize the thermodynamic r	elations and its significance	Thinking	ofici	tainr		Analysis	velo	lesign,	Us:	Culture	۰ð		Team	ion	× ™	arni		
		Τμί	P		Bui				Tool	& CL	onment		ъ	licat	Mgt.	) Le		
Course Learning Outcomes (CLO):	At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering I	Problem	Design &	Analysis,	Modern ⁻	Society 8	Environn	Ethics	Individual	Communication	Project <b>N</b>	Life Long	PSO - 1	PSO - 2 PSO - 3
CLO-1: Apply the concept of thermo	odynamic properties to quantify energy transfer	3	90	80		Н	М	М	М	L	L	L	М	М	М	М	М	M M
CLO-2: Apply thermodynamic laws	to analyze various thermodynamic systems	3	90	80	1	Н	М	М	М	L	L	L	М	М	М	М	М	M M
CLO-3: Apply the concept of entrop	y and availability to thermodynamic systems and to do exergy analysis	3	90	80	1	Н	М	М	М	L	L	L	М	М	М	М	М	M M
	ure substances and analyze vapour power cycles	3	90	80	1	Н	М	М	М	L	L	L	М	М	М	М	М	M M
CLO-5 : Evaluate the properties of g		3	90	80	1	Н	М	М	М	L	L	L	М	М	М	М	М	M M
CLO-6 : Apply the knowledge of the	modynamic relations to evaluate non measurable properties	3	90	80	1	М	Μ	М	М	L	L	Ĺ	M	М	М	М	М	M M

Durati	ion (hour)	12	12	12	12	12
S-1	SLO-1	Thermodynamic system and Control volume	Limitations of first law	Clausius theorem	Pure substances, Phase change phenomenon of a pure substance	Properties of ideal gases
3-1	SLO-2	Thermodynamic properties, State, Process and Cycle	Cyclic heat engine, Energy reservoirs,	Concept of entropy, T-s diagram	Property diagrams for phase change process	Properties of real gases
S-2	SLO-1	Thermodynamic equilibrium, Quasi-static process	Refrigerator and heat pump	Clausius inequality, Entropy principle	T-v, P-v,P-T diagram, P-v-T surface, Critical point and Triple point	Equation of state
3-2	SLO-2	Pure substance , State postulate	Thermal efficiency and COP	Application of the concept of Clausius theorem	T-s and h-s diagram, Dryness fraction,	Vander Waal's equation of state
S-3	510-1	Concept of temperature, Zeroth law of thermodynamics,	Kelvin-Planck statement and Clausius statement of second law	Clausius inequality on solving problems of heat engines, heat pump and refrigerators.	Use of Steam tables,Mollier chart	Compressibility factor, compressibility chart
3-3	SLO-2	Work and heat interaction	Equivalence of the two statements	Evaluation of change in entropy for solids and liquids	Identification of states & Determination of properties	Problem solving on evaluation of properties of ideal gas and real gas.
S-4	SLO-1	Path function and point function.	Tutorials on Second law of thermodynamics	Tutorials on change in entropy for solids and liquids	Tutorials on calculation of steam properties	Tutorials on properties of ideal gas and real gas.
5-4	SLO-2	pdVwork for various quasi-static processes	Tutorials on Second law of thermodynamics	Tutorials on change in entropy for solids and liquids	Tutorials on calculation of steam properties	Tutorials on properties of ideal gas and real gas.
S-5	SLO-1	Tutorials on Work and Heat Transfer.	Reversible and irreversible process	Evaluation of change in entropy for ideal gases undergoing various processes	Rankine cycle	Properties of mixture of gases
3-0	SLO-2	other types of work transfer including flow work	Causes of irreversibility	Evaluation of change in entropy for ideal gases undergoing various processes	Operation of Rankine cycle	Dalton's law of partial pressures
S-6	SLO-1	First law of thermodynamics for a closed system	Carnot cycle	Available and unavailable energy	Analysis of Rankine cycle	Amagat's law of additive volumes
3-0	SLO-2	Concept of total energy E	Working of a Carnot engine	Dead state	Analysis of Rankine cycle	Internal energy, enthalpy
S-7	SLO-1	Various modes of energy	Thermal efficiency of a Carnot heat engine	Availability	Problems solving on Rankine cycle	specific heats and entropy of gas mixtures

	SLO-2	Tutorials on first law for a closed system	Tutorials on Carnot engines	Irreversibility	Problems solving on Rankine cycle	Problem solving on evaluation of properties of gas mixtures
S-8	SLO-1	constant pressure, process in which PV=C	Reversed Carnot cycle	Tutorials on change in entropy for ideal gases	Tutorials on Rankine cycle with different turbine inlet conditions	Tutorials on properties of gas mixtures
3-0	SLO-2	Tutorials on first law: Polytronic adjustic	Carnot's theorem	Tutorials on change in entropy for ideal gases	Tutorials on Rankine cycle with different turbine inlet conditions	Tutorials – Mixing of gases
S-9	SLO-1	Internal energyand Enthalpy, specific heats	Thermodynamic temperature scale.	Availability of energy entering a system	Reheat Rankine cycle	Maxwell's relations
3-9	SLO-2	Process and cycle	Efficiency of Carnot heat engine	Availability of energy entering a system	Operation of reheat Rankine cycle	T-ds relations
C 40			COP of Carnot refrigerator	Problems solving on Availability of a closed system	Analysis of reheat Rankine cycle	Equations for dH and dU.
S-10	SI 0-2	Derivation of general energy equation for a control volume	Carnot heat pump, COP	Problems solving on Availability of a closed system	Concept of regeneration in Rankine cycle	Clausius-Clapeyron Equation
S-11	510-1	Application of SFEE to various steady flow devices	Tutorials on combined heat engine & refrigerator/heat pump system	Availability in a steady flow process	Problem solving on reheat Rankine cycle	Joule-Thomson experiment
3-11	SLO-2	Problem solving on first law applied to flow processes	Tutorials on combined heat engine & refrigerator/heat pump system	Problem solving on availability	Problem solving on reheat Rankine cycle	Joule -Thomson coefficient.
6 42	SLO-1	Tutorial on first law applied to various steady flow devices	Tutorials on combined heat engine & refrigerator/heat pump system	Tutorials on availability	Tutorials on reheat Rankine cycle	Tutorials on Thermodynamic relations
S-12	SLO-2	Tutorial on first law applied to various steady flow devices	Tutorials on combined heat engine & refrigerator/heat pump system	Tutorials on availability	Tutorials on reheat Rankine cycle	Tutorials on Thermodynamic relations

Learning	1. 2.	Mahesh M. Rathore, Thermal Engineering, Tata McGraw Hill Education, 2012 Yunus. ACengel., Michael A Boles, Thermodynamics – An Engineering Approach, 8th ed., Tata McGraw	5	<u>.</u>
Resources	_	Hill-Education, 2015	6	<i>3.</i>
	J.	Nag. P.K, Engineering Thermodynamics, 5 th ed., Tata McGraw Hill Education, 2013	7	7
	4.	R. K. Rajput, Thermal Engineering, 10 th ed., Laxmi Publications (P) Ltd, New Delhi, 2017	1	•

5. Michael J Moran, and Howard N Shapiro, Fundamentals of Engineering Thermodynamics, 8th ed.,

- Miniciael and Noval, and Toward V Shapino, Fundamentals of Engineering Thermodynamics, 6% et John Wiley & Sons, New York, 2015
   Claus Borgnakke, Richard E. Sonntag, Fundamentals of Thermodynamics, 7th ed., Wiley, 2009
   Ramalingam. K. K, Steam tables, Sci. Tech Publishers, 2009

Learning Asses	ssment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weigl	htage)			Einal Examination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA-4	l (10%)#		i (50% weiginage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	100	0 %	100	0%	100	0 %	10	0 %	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr.R.Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in	1. Dr. R Velraj, IES,CEG, Anna University, Chennai, velrajr@annauniv.edu	1. Mr. V Thirunavukkarasu, SRMIST
2. Dr.A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in	2. Dr. Raju Abraham, NIOT, Chennai, abraham@niot.res.in	2. Dr. M. Cheralathan, SRMIST

Cou Co		18MEC102T	Course Name		FL	UID MECHANICS			ourse tegory		С				Pro	fessio	onal C	ore					L 3	T 1	P 0	C 4
Co	requisite ourses	Nil			Co-requisite Courses	Nil			Co	ressi urses	ive s	Nil														
Cours	e Offering	Department	Mechan	nical Engineeri	ng	Data Book	/ Codes/Standards		Nil																	
Cours	e Learnin	g Rationale (CLI	R): The purp	pose of learnin	ng this course is to:				Le	arnin	ıg					Prog	ıram L	.earr	ning O	outcor	nes (	PLO)				
CLR-1					ement techniques u				1	2	3	`	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2 CLR-3 CLR-4 CLR-5 CLR-6	: Utilize : Identii : Utilize	the applications	of dimensiona inciple and des oundary layer	al and model a sign of hydrau r, lift and drag i	lic turbines and pur forces				Thinking (Bloom)	Proficiency (%)	Attainment (%)		ysis	Development	Design, Research	Tool Usage	Culture	& Sustainability		eam Work	u	& Finance	Learning			l
Cours CLO-1	e Learnin	g Outcomes (CL	.0): At the e		rse, learners will be	able to:			N Level of	S Expected	8 Expected	ŀ		H Design &	IT Analysis,	K Modern	- T Society & Cul	- T Environment &	T Ethics	C ≤ S Individual & T	- T Communication	<ul> <li>Project Mgt. 8</li> </ul>	∓ Life Long	- T PSO - 1	: ⊥ PSO - 2	- IT PSO - 3
CLO-2 CLO-3		the fluid flow pro		for practical flu	id flow problem				3	85 85	80 80	H		H	H H	M M	L			M	L	-	H H	L	H H	
CLO-4		fy the energy exc							3	85	80	İ		H	H	M	L	L	L	M	L	-	H	L	H	L
CLO-5		fy the boundary la							2	85	80	ŀ		Н	Н	М	L	L	L	М	L	-	Н	L	Н	L
CLO-6	: Analy	ze the dynamics	of fluid flows a	and their gover	rning parameters				3	85	80	ŀ	H	Н	Н	М	L	L	L	М	L	-	Н	L	Н	L
Durati	on (hour)		12			12	1	2						1	2							1	2			
S-1	SLO-1	Types of Fluids,	Properties of	fluid	Types of fluid flow		Dimensional analysis	:			ŀ	lydraulio	machi	nes					Boun	dary l	ayer					
3-1	SLO-2	Density, Specific	weight, Spec	tific volume,	Lagrangian and Eu	llerian approach of study	Dimensions, Dimensi	ional H	lomoge	neity	7	Furbines	and Pu	ımps					Lami	nar bo	ounda	ry lay	er			
S-2	SLO-1	Specific gravity,	Vapor pressu	re	Velocity of Fluid pa	articles	Buckingham's pi theo	orem			(	Classifica	tion of	turbin	es an	d pun	nps		Turbi	ulent t	ound	lary la	iyer			
5-2	SLO-2	Viscosity: Dynan	nic and Kinem	natic viscosity	Acceleration of Flu	id particles	Model analysis				ŀ	Pelton tu	bine-V	Vorkin	g prino	ciple			Boun	dary l	ayer t	thickn	ess			
6.2	SLO-1	Newton's law of	viscosity		Continuity equation	1	Advantages and appl	lication	S		۱	/elocity	riangle						Displ	acem	ent th	ickne	SS			
S-3		Cuufaaa tanalan	and Canillarit		Continuity or woting	a in thus a dimensiona	Cimilituda Dimension	-			,				o ulto una				Probl	lem so	lving	on bo	ounda	ry lay	er	

Similitude, Dimensionless numbers

Tutorials on Buckingham's pi theorem

Tutorials on Buckingham's pi theorem

Tutorials on Reynold's and Froude model

Model laws- Reynold's, Froude

Weber and Mach model laws

Model laws- Euler

laws

Design parameters, Performance

Francis turbine-Working principle

Kaplan turbine-Working principle

Tutorials on Pelton turbine

Tutorials on Pelton turbine

Velocity triangle

Velocity triangle

thickness

**Momentumthickness** 

Energy thickness

layer

Tutorials on Boundary layer thickness

Tutorials on Boundary layer thickness

Drag force on a flat plate due to boundary

von Karman momentum integral equation

Continuity equation in three dimensions

Tutorials on Velocity, Acceleration and

Tutorials on Velocity, Acceleration and

Applications of bernoulli's equation

Continuity equation

Continuity equation

Euler equation of motion

Bernoulli's equation

Fluid Dynamics

SLO-2 Surface tension and Capillarity

SLO-1 Tutorials on fluid properties

SLO-2 Tutorials on fluid properties

Compressibility

Hydrostatic law

SLO-2 Manometers: Types

Bulk modulus of elasticity and

Fluid statics: Pascal'slaw

S-4

S-5

S-6

SLO-'

SLO-2

SLO-1

	SLO-1	Piezometer	Venturimeter	Laminar flow-Reynold's experiment	Cavitation in turbines	Separation of boundary layer
<b>S-</b> 7	SLO-2	Applications and Limitation	Orificemeter	Hagen poiseuille law	Problem solving on Turbine performances	Problem Solving on momentum integral equation
<b>c</b> .	SLO-1	Tutorials on laws of fluid statics	Tutorials on Venturimeter and Orificemeter	Tutorials on major and minor losses	Tutorials on Francis and Kaplan turbine	Tutorial problems on momentum integral equation
S-8	SLO-2	Tutorials on laws of fluid statics	Tutorials on Venturimeter and Orificemeter	Tutorials on major and minor losses	Tutorials on Francis and Kaplan turbine	Tutorial problems on momentum integral equation
S-9	SLO-1	U-Tube manometer	Pitot tube	Turbulent flow-Darcy equation	Reciprocating pump	Forces exerted by a flowing fluid on a stationary body
3-9	SLO-2	Problem Solving on U-tube manometer	Nozzle flow meter	Minor loss due to sudden enlargement	Single and double acting pumps-working principle	Separation of flow over bodies
S-10	SLO-1	Single column manometer	Bernoulli's equation for real fluid	Minor loss due to sudden contraction	Centrifugal pump - Working principle	Streamlined and bluff bodies
3-10	SLO-2	Differential U-tube manometer	Types of flow lines, Stream line	entrance and exit of pipe	Velocity triangle, Design parameters	Development of lift on a circular cylinder
S-11	SLO-1	Inverted differential U-tube manometer	Streak line and Path line	Flow through pipes in series	Cavitation in pumps	Development of lift on an aerofoil
5-11	SLO-2	Problem solving in differential manometer	Impulse Momentum equation	Flow through pipes in parallel	Performance curves on turbines and pumps	Problem Solving on lift and drag forces
6 42	SLO-1	Tutorials on differential manometer	Tutorials on finding force exerted by fluid on pipe bend	Tutorials on major and minor losses	Tutorials on centrifugal pump	Tutorials on lift and drag forces
S-12	SLO-2	Tutorials on differential manometer	Tutorials on finding force exerted by fluid on pipe bend	Tutorials on major and minor losses	Tutorials on centrifugal pump	Tutorials on lift and drag forces
Learni Resou	•	2. Bansal. R. K, A text book of Fluid Med	hanics and Hydraulic Machines, S.Chand & chanics and Hydraulics Machines, Laxmi pub fluid Mechanics, Standard Book House 15the	lications (P) Ltd., 9 th ed., 2015 5. Stre	te. F. M, Fluid Mechanics, Tata McGraw-Hill, eter. V. L, Wylie. E. B, Fluid Mechanics , McC Ii P.N. Seth S.M. Hydraulics and Fluid Mecha	Graw Hill,5 th ed., 1984

Bansai, R. K. A text book of Pluid Mechanics and Pluid Mechanics, Laxin publications
 Modi P.N, Seth S.M, Hydraulics and Fluid Mechanics, Standard Book House, 15thed., 2002

Sueeler. v. L, vyyle. E. B, Fluid Mechanics, McGraw Hill, 5thed., 1984
 Modi P.N, Seth S.M, Hydraulics and Fluid Mechanics, Standard Book House, 15thed., 2002

Learning Asses	sment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Einal Examination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA –	4 (10%)		i (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	40 %		30 %		30 %		30 %		30%	
Level I	Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply	40 %	_	40 %	_	40 %	_	40 %	_	40%	_
	Analyze	40 70	-	40 70	-	40 70	-	40 70	-	4070	-
Level 3	Evaluate	20 %		30 %		30 %		30 %	_	30%	
Lever J	Create	20 70	-	50 70	-	50 78	-	50 78	-	5070	-
	Total	100	0 %	100	0%	10	0 %	10	0%	10	0 %
	Total								0 %	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr.R.Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in	1. Dr. R Velraj, IES, CEG, Anna University, Chennai, velrajr@annauniv.edu	1. Mr. V. Rajasekar, SRMIST
2. Dr.A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in	2. Dr. Raju Abraham, NIOT, Chennai, abraham@niot.res.in	2. Dr. K. Suresh Kumar, SRMIST

Cou Co		18MEC103T	Course Name		MANUFA	CTURING TECHNOLOG	Y		ourse tegor		С				Pro	fessio	onal C	ore				:	L 1 3 -			C 4
C	requisite ourses e Offering	Nil Department	Mechar	nical Engineer	Co-requisite Courses	Nil Data Book	Codes/Standards</th <th></th> <th></th> <th>ogres: ours</th> <th></th> <th>Nil</th> <th></th>			ogres: ours		Nil														
		-		v	0											_					(5)					
		g Rationale (CL			ng this course is to	:				earn									ing Ou		•					
CLR-1 CLR-2		e the Concepts of fy the Mechanica							1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-3	: Identi	fy the Theory of I	metal cutting						Ê	()					arch			ability								
CLR-4					in manufacturing i				Bloor	cy (%	int (%	adde	5	nent	Rese	Ð		staine		Work		ance				
CLR-5 CLR-6	: Identi : Utilize				ssembly operation ng, joining and finis	s. hing operations and deter	rmine their suitability		evel of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Endineering Knowledge	Prohlem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability		Individual & Team Work	tion	Project Mgt. & Finance	ife Long Leaming			
									of Thi	ted PI	ted At	prine	u A n	S D	sis, De	n Toc	y & C	nmen		ual &	Communication	t Mgt.	ng Le	-	5	e
Cours	e Learnin	g Outcomes (CL	LO): At the e	end of this cou	ırse, learners will b	e able to:			evelo	xpec	xpec	- noine	Proble	)esign	vnalys	Aoder	Societ	inviro	Ethics	ndivid	Comm	rojec	ife Lo	- OS	PSO-2	PSO - 3
						g techniques to apply for r			2	90	85	Н	L	M	M	-	-	-	-	М	-	-	-	Н	L	Н
CLO-2 CLO-3						y the techniques for any f			2	90 90		H H			M	-	-	-		M M		-		H H	L	H
CLO-3						owledge about cutting too anning and broaching ma			2	90		H			I	-	-	-		M		-		n H	$\frac{L}{I}$	H H
CLO-5	: Identi	fy various metal j	joining proces	s and its appli	ication in various in	dustrial sectors			2	90	85	Н	L	Н		-	-	-	-	М	-	-	-	Н	Ē	Н
CLO-6	: Identi	ify manufacturing	processes, to	ols, environm	ent and suitable m	anufacturing processes fo	or fabrication work		2	90	85	Н	Ν	М	М	-	-	-	-	М	-	-	-	Н	L	Η
Durati	on (hour)		12			12	1	2						1	2							12				
	SLO-1	Introduction to C	Casting		Introduction to Ho	t Working	Orthogonal cutting				I	Introductio	on to	Gear I	Nanufa	ncturir	ng		Types Joints,					Туре	es of	
S-1	SLO-2	Patterns and its	types and Ma	terials	Cold Working		Oblique cutting				I	Machining	g and	Gener	ating I	Proce	sses	1	Power Weldin	Dens				in Fu	ision	
•	SLO-1	Pattern Allowan	ces		Hot and Cold Roll	ing	Classification of cuttir	ng tools	S			Classifica basic con			g Mac	hines	and it	-	Genera	v	hnolo	gy of	Arc V	/eldin	g	
S-2	SLO-2	Moulding and its	s types,		Types of rolling; T Universal rolling	wo, three, four, multi and	Single point cutting to	ols				Types of o	cutter	s in Mi	lling m	achin	es		consun electro							
S-3	SLO-1	Moulding sand			Open die and Clo	sed die forging	Multipoint cutting tool	S				Types of i periphera				(up a	nd dov		Fundar Weldin		als of S	Shield	ded M	etal A	rc	
3-3	SLO-2	Design of Gating	g system		Wire drawing		Tool signature for sin	gle poi	int cut	ting to		Simple an and its ca			l Inde	xing n	nethoa		Gas Me Arc We			elding	, and	Subr	nerge	эd
S-4	SLO-1	Tutorial for desig	gn of gating sy	rstem	Tutorial Session		Tutorial on Numerical calculation	in cut	ting fo	orce		Tutorial 1	0 Nur	nerical	in ind	exing	metho	ods	Tutoria	l Ses	sion					
3-4	SLO-2	Tutorial for desig	gn of gating sy	rstem	Tutorial Session		Tutorial on Numerical calculation	in cut	ting fo	orce		Tutorial 1	0 Nur	nerical	in ind	exing	metho	ods	Tutoria	l Ses	sion					
S-5	SLO-1	Numerical proble	ems on pourin	g time	Hot, Cold wire dr	awing	Mechanics of orthogo	nal cu	tting			Shaping a	and sl	otting	Machir	ne			Fundar				Ū			ding
3-3	SLO-2	Numerical proble	lems on Caine	's rule	Forward, backwai	rd and tube extrusion	Force relationship					Descriptic	n and	l Oper	ations			1	Resista welding	g						
S 6	SLO-1	Numerical Probl	lems on Riser	design	Shearing, Piercing	9	Merchant Circle					Planing; [				•		1	Param welding		consid	leratio	ons in	solid-	state	,
S-6	SLO-2	Numerical Probl	lems on Riser	design	Trimming and Stre	etch forming	Merchant Circle			_		Quick retu holding D			sm, W	ork a	nd too		Differei solid-st				ion we	elding	and	

S-7	SLO-1	Cores	Theory of Bending, Bending length	Determination of shear angle	Boring machine and its Specification, operations	Forge Welding, Roll Welding, Explosion Welding, Ultrasonic welding
3-1	SLO-2	Core making	Bending force calculations	Determination of shear angle	Jig boring machine	Friction welding and Friction stir welding, Friction surfacing and processing
S-8	SLO-1	Tutorial on Numerical in riser design and pouring time	Tutorial on Numerical in bending force calculation	Tutorial on Numerical in Merchant circle	Tutorial on Discussion about mechanism of special purpose machine	Tutorial Session
3-0	SLO-2	Tutorial on Numerical in riser design and pouring time	Tutorial on Numerical in bending force calculation	Tutorial on Numerical in Merchant circle	Tutorial on Discussion about mechanism of special purpose machine	Tutorial Session
S-9	SLO-1	Shell casting	Drawing	Chip formation		Basic Solidification Concepts, Grain structure
3-9	SLO-2	Investment Casting	Blank size and and drawing force calculations	Cutting tool materials	LOOL nomenclature of proaching tool	Post-Solidification Phase Transformations, CCT diagram
S-10	SLO-1	Die casting	Tube forming, Embossing and coining	Tool wear calculation		Residual Stresses and Distortion, weld defects, Inspection and Testing Methods,
3-10	SLO-2	Centrifugal Casting	Progressive dies	Taylor tool life calculation	Surface, Cylindrical and Centerless Grinding	factors of weldability, Types of weldability test techniques,
S-11	SLO-1	Casting defects	Compound and Combination dies	Machinability		Introduction on brazing and soldering methods
3-11	SLO-2	Remedies for defects	Defects in forming	Cutting Fluids	Lapping, Buffing, Honing, and Super finishing	filler materials
S-12	SLO-1	Tutorial Session	Tutorial Session	Tutorial Session	Tutorial Session	Tutorial Session
0-12	SLO-2	Tutorial Session	Tutorial Session	Tutorial Session	Tutorial Session	Tutorial Session
				7"		

 Learning
 1.
 SeropeKalpakjian, Steven R Schmid Manufacturing Engineering and Technology, 7th ed., Pearson, 2018
 5.
 John A. Schey, Introduction to manufacturing processes, 3rd ed., McGraw-Hill, 2000

 2.
 Mikell P. Groover, Fundamentals of Modern Manufacturing Materials, Processes, and Systems, 4th ed., John Wiley & Sons, 2010
 5.
 John A. Schey, Introduction to manufacturing processes, 3rd ed., McGraw-Hill, 2000

 3.
 Roy A. Lindberg, Processes and materials of manufacture, Boston: Allyn and Bacon, Pearson education, 2006
 5.
 John C. Lippold, Welding Metallurgy, 2rd ed., John Wiley & Sons, 2013.

 4.
 A.C. Davies, The science and practice of welding, Vol. 1 and 2, 10th ed., Cambridge University Press, 2002
 8.
 Welding Handbook – Volume 1 to 5, 9th ed., American Welding Society.2013

Learning Assess	sment										
	Bloom's			Contir	nuous Learning Ass	essment (50% weig	htage)			Einal Examination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA – 2	2 (15%)	CLA –	3 (15%)	CLA-4	l (10%)#		i (50% weiginage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	40 %	_	30 %	_	30 %	_	30 %	_	30%	_
Level I	Understand	40.70	_	50 /0	_	50 70	_	50 70	_	5070	_
Level 2	Apply	40 %	_	40 %	_	40 %	_	40 %	_	40%	-
	Analyze	40.70		40 70		40 70		40 70		4070	
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%	
Level 3	Create	20 %	-	30 /0	-	30 %	-	30 %	-	30%	-
	Total	100	0 %	100	) %	10	0 %	10	0%	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. R. Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in, rkpearls@yahoo.com	1. Dr. P. Hariharan, Anna University, hari@annauniv.edu, hariharan2311@gmail.com	1. Dr. M. Prakash, SRMIST
2. Dr. A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in	2. Dr. N. Arunachalam, IIT Madras, chalam@iitm.ac.in	2. Dr. Manidipto Mukherjee, SRMIST

Course Code	18MEC1041 -	Course Name	FLUID DY	NAMICS LABORATORY		Course Categor		С				Pro	fessio	nal C	ore					L 0	T 0	P 2	C 1
Pre-requisite Courses	Nil		Co-requisite Courses	18MEC102T		C	ogres Cours		Nil														
Course Offering	Department	Mechanical Enginee	ring	Data Book	/ Codes/Standards	Nil																	
Course Learning	g Rationale (CLR):	The purpose of learn	ng this course is to:			I	_earn	ing					Prog	ram L	earni	ing Ou	utcom	nes (F	PLO)				
	ce working of flow me					1	2	3		2	3	4	5	6	7	8	9	10	11	12	13	14	15
		namics of fluid flow in	pipes									ء			Ξţ								
	fy the various energy fy the performance of						(%)	(%)		2	Ŧ	Design, Research			nabil		¥		Ð				
	ze the performance of					Thinking (Bloom)	uc A	lent			omer	Res	ge		ustai		Team Work		& Finance	D			
			flow meters, energy	heads and losses, perfor	rmance of pumps, turbi	nes int	oficie	ainm		lvsis	velop	sign,	Usa	lture	& SI		Tean	ы	& Fir	Learning			
	•	, 0, ,		<i></i>		Thin _	d Pro	dAtt		Ana	De	Des	Tool	s cu	nent		8	nicati	Agt.	J Lee			
Course Learning	g Outcomes (CLO):	At the end of this cou	ırse, learners will be	able to:		Level of .	Expected Proficiency (%)	Expected Attainment (%)		Problem Analvsis	Design & Development	Analysis,	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual &	Communication	Project Mgt.	Life Long I	PSO - 1	PSO - 2	PSO - 3
		v measurement device	S			3	95	85	ŀ	I H		Ĥ	М	L	L	L	М	М	М	М	L	L	L
	ze the different type o					3	95		H			Н	М	L	L	L	М	М	М	М	L	L	L
	ate the various energ					3	95		H			Н	М	L	L	L	М	М	М	М	L	L	L
	ze the performance o ze the performance o					3	95 95		H			H	M M	L	L	L	M M	M M	M M	M M	L	L	
			flow meters energy	heads and losses, perfo	rmance of numps_turbi							H	M	L	L	L	M	M	M	M	L	L	
		, wonting principles of	non motoro, onorgy			100 0	00	00						-	-	- 1					-	-	
Duration (hour)		6		6	6						e	<b>i</b>							6				
S-1 SLO-1 SLO-2	Flow measurement u	5	Flow visualization apparatus	using Reynolds	Study of major Energy	loss in a p	ipe		Study of	Kaplar	n turbir	ne Tes	t Rig		ł	Study	of Su	bmer	sible	Pump	Test	Rig	
	Determine the co-eff. Orifice meter	icient of discharge of	Free and forced vo	rtex flow visualization	Determine friction fact	or at a give	n pip	Э	Performa	nce te	st on P	Kaplan	turbir	ne	l	Perfor	manc	e tes	t on S	Subme	rsible	pum	c
S-3 SLO-1 SLO-2	Flow measurement u	ising Venturimeter		file of forced vortex and e forced vortex curve	Study of Pelton turbine	9			Study of	Franci	s turbii	ne Tes	t Rig			Study	of Re	cipro	cating	g Pum	o Tes	t Rig	
	Determine the co-eff Venturimeter	icient of discharge of	Verify Bernoulli's th	neorem	Performance test on F	elton turbii	ne		Performa	nce te	st on F	Francis	s turbii	ne	I	Perfor	manc	e tesi	t on F	Recipro	ocatin	g pur	np
	Flow measurement u Visualization of cavit		Determine total he points in the pipe	ads of fluids at given	Study on impact of jet	of water or	n vane	əs	Study of	Centrii	^f ugal P	ump T	est R	ig		Study Gear I				rforma	nce t	est o	1
S-6 SLO-1	Determine velocity a Prandtl type Pitot tub	t a point by using		ses &Determine minor fittings	Determine co-efficient water on different van		of jet d	of	Performa	nce te	st on (	Centrifi	ugal p	итр	1	Perfor Perfor	manc	e tesi	t on J				

0101			lococo duo to pipo intiligo				enennance teet en eeun punip
Learning	1.	Robert W. Fox, Alan T. McDonald, Ph	ilip J. Pritchard, Introduction to Fluid Mechan	ics, 8 th ed., Wiley, 2013		Frank M.White, Fluid Mechanics,7th ed., N K L Kumar, Engineering Fluid Mechanics,	/cGraw-Hill, 2018
Resources	2.	P.N. Modi, S.M. Seth, Hydraulics& Flu	id Mechanics Including Hydraulics Machines	s, 20 th ed., Standard Book House,2018	5.	Laboratory Manual	

Learning Asse	essment										
	Dia ami'a			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examinatio	n (EOV) woightaga)
	Bloom's	CLA –	1 (10%)	CLA –	2 (15%)	CLA-	3 (15%)	CLA –	4 (10%)		n (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	•	40 %		30 %		30 %	_	30 %		30%
Level I	Understand	-	40 /0	-	30 %	-	30 %	-	30 %	-	30%
Level 2	Apply		40 %	_	40 %	_	40 %	_	40 %	_	40%
Leverz	Analyze	-	40 /0	-	40 70	-	40 /0	-	40 70	-	4070
Level 3	Evaluate		20 %		30 %		30 %		30 %		30%
Levers	Create	-	20 %	-	30 %	-	50 %	-	30 %	-	30%
	Total	10	0 %	10	0 %	10	0 %	10	0 %	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr.R.Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in	1. Dr. R Velraj, IES, CEG, Anna University, Chennai, velrajr@annauniv.edu	1. Dr. R Senthil, SRMIST
2. Dr.A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in	2. Dr. Raju Abraham, NIOT, Chennai, abraham@niot.res.in	2. Mr. S Bharath Subramaniam, SRMIST

Course Code	18MEC105L	Course Name	MANUFACTURIN	IG PROCESS LABO	RATORY		ourse tegory		С				Pro	ofessio	onal C	Core					L 0	T 0	P 2	C 1
Pre-requisite Courses	INII		Courses	18MEC103T			C	gress ourse		Nil														
Course Offerin	g Department	Mechanical Engine	ering	Data Bo	ok / Codes/Standards		Nil																	
Course Learnin	ng Rationale (CL	R): The purpose of lear	ning this course is to:				L	earnir	ng					Prog	gram l	earn	ing O	utcor	nes (l	PLO)				
		of lathe operations					1	2	3		1 2	2 3	4	5	6	7	8	9	10	11	12	13	14	15
		n of flat surface and conto	our shapes on the giver	n component									4			ity								
	tice basic Gear m tice Surface finish						(mo	(%)	(%)		e	+	earc			Sustainability		¥		m				
		on of Sand Mould					(Blo	ncy	ent (		vledo	mer	Res	ge		ustaii		٥W ۲		ance	б			1
		athe, CNC Lathe, Shaper,	Slotter, Milling, CNC N	Illling, Gear hobbing,	grinding and sand moul	lding	king	oficie	ainm		Knov	velor	sign,	Usa	Iture			Fean	io	& Fir	Learning			
		, , , ,	, 0,	<u> </u>	0 0	<u> </u>	Thin	d Pro	d Att		Ling	S Dev	Des	Tool	& Cu	nent		al & T	licati	dgt.	g Le			ļ
Course Learnin	na Quitcomes (Cl	O): At the end of this c	ourse learners will be	ahle to:			evel of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)		Engineering Knowledge	Problem Analysis Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment &	cs	ndividual & Team Work	Communication	Project Mgt & Finance	_ife Long	0-1	0 - 2	<b>)</b> - 3
	•	,						Exp	щхр			Des C					- Ethics	indi		Pro.		- DSO -	- OSd-	- OSd-
		create new components		dimensions			3	85 90	80 85					Н	L	H	L	L	H H	L	Н	L	L	L
	tice the flat surfact tice basic Gear M	e and contour shapes on	the given component				3	90 95	85 90		H N M L	И L L H		H	L	L	L	L H	н Н	L	H H		L	L
	tice Surface Finish						3	85	80		H L	L H		L	L	H	H	L	L	L	H	L	L	Ĺ
	tice casting and m						3	95	90	1	M F	H H	L	L	L	Н	L	L	L	L	L	L	L	L
CLO-6 : Prac	tice machines like	lathe, CNC Lathe, Shape	er, Slotter, Milling, CNC	Mllling, Gear hobbin	g, grinding and sand mo	oulding	3	90	85		ΗN	ИН	М	М	L	М	М	М	М	L	Н	L	L	L
Duration (hour)		6		6		6							6							6	i			
S-1 SLO-1 SLO-2	Perform plain tu	ming in lathe	Perform eccentric tu	ırning in lathe	Perform V block sha machine	aping in	shape		ŀ	Helical C	Gear c	utting	n Hob	bing n	nachir	ne		ling of Cutter					ol in 1	ΓοοΙ
S-2 SLO-1 SLO-2	Perform step tur	ning in lathe	Perform Taper borir	ng in lathe	Perform V block sha machine.	aping in	shape		ŀ	Helical G	Gear c	utting	n Hob	bing n	nachir	ne		ling of Cutter					ol in 1	ΓοοΙ
S-3 SLO-1 SLO-2	Perform chamfe	ring in lathe	Perform Knurling in	lathe	Perform Polygon mi	lling in i	nilling	machi		Perform nachine		ce grin	ding in	Grind	ding			aratior rn with					r solic	l/split
S-4 SLO-1 SLO-2	Perform taper tu rest/offset metho	rning by compound od in lathe	Perform plain turnin	g in CNC Lathe	Perform Polygon mi	lling in i	nilling	machi	rie r	Perform nachine		Ū	°.					aratior rn with					y solic	l/split
S-5 SLO-1 SLO-2	Perform drilling i	in lathe	Perform step turning	g in CNC Lathe	Spur Gear cutting in	milling	machi	ne		Perform machine		lrical g	rinding	in Gr	rinding			aratior rn with					solid/s	split
S-6 SLO-1 SLO-2	Perform externa cutting in lathe	l and internal thread	Performing chamfer	ing in CNC Lathe	Spur Gear cutting in	milling	machi	пе		Perform nachine		lrical g	rinding	in Gr	rinding			aratior rn with					solid/s	;plit
Learning Resources		W.A.J, Workshop Techno udhary.S.K., Hajra Chouc			ology Vol II, Media Publ	lishers,	2007		3. 4.	Jame: Labor				achini	ing Ha	nd Bo	ook, Ir	ndustr	ial Pre	ess In	nc., Ne	əw Yo	ork, 19	996

Learning Asse	essment										
	Dia ami'a			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examination	n (EOV) weightege)
	Bloom's	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	4 (10%)#		n (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	-	40 %	-	30 %	-	30 %	-	30 %	-	30%
Level 2	Apply Analyze	-	40 %	-	40 %	-	40 %	-	40 %	-	40%
Level 3	Evaluate Create	-	20 %	-	30 %	-	30 %	-	30 %	-	30%
	Total	10	0 %	10	0 %	10	0 %	10	0 %	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. R. Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in, rkpearls@yahoo.com	1. Dr. P. Hariharan, Anna University, hari@annauniv.edu, hariharan2311@gmail.com	1. Mr. S. Sakthivel, SRMIST
2. Dr. A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in	2. Dr. N. Arunachalam, IIT Madras, chalam@iitm.ac.in	2. Mr. Sundar Singh Sivam S.P, SRMIST

Course Code	18MEC106T	Course Name	MECH	IANICS OF SOLIDS	-	ourse tegory	1	С				Profe	ssional	Core					L 3	T 1	P 0	C 4
Pre-requ Course	10///=5/011		Co-requisite Courses	Nil			gress ourse		18MEC20	8T, 18	BMEE3	05T										
Course Of	fering Department	Mecha	nical Engineering	Data Book / Codes/Sta	andards	Nil																
Course Lea	arning Rationale (CL	R): The pur	pose of learning this course is to:			L	earnir	ıg				Р	ogram	Learn	ning C	)utco	mes (	PLO)				
CLR-1 :	Utilize concepts of stre	ess and strain				1	2	3	1	2	3	4	56	7	8	9	10	11	12	13	14	15
CLR-3 : / CLR-4 : / CLR-5 : / CLR-6 : /		sign shafts deflection in b sign column a sss, strain, slo	eams nd cylinders pe and deflection in beams and de	esign of shaft, column and cylinders		l of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Aodern I ool Usage Society & Culture	<b>_</b>	S	ndividual & Team Work	Communication	^o roject Mgt & Finance	Long Learning	- 1	- 2	- 3
	•		end of this course, learners will be			oLevel			Engi H	H Prob	- Desi	Anal	- Modern - Society &	Envi	- Ethics	- Indiv	- Com	- Proje	Life	- PSO	PSO	- PSO
	Identify concepts of sti		s developed in beams			3	85 85	80 80	H H	н	L				L						M	
-	Analyze bending and s Apply the concepts ne					3	85	80	H	H	H										M	
	Analyze the slope and					3	85	80	H	H		1			I	1	1	I	1		M	I
			sign of column and cylinders			3	85	80	H	H	H	L	LL	L	L	L	L	L	L	L	M	L
				ncepts to design of shaft, column and	d cylinders	3	85	80	Н	Н	Н	L	L L	L	L	L	L	L	L	L	М	L

Durati	on (hour)	12	12	12	12	12
S-1	SLO-1	Concept of stress and strain, Hooke's law	Introduction to types of beams and loads	Theory of pure torsion	Introduction, Beam deflection	Columns and struts
3-1	SLO-2	Tensile, compressive and shear stresses, Poisson's ratio	Shear force, bending moment diagram for cantilever beam: (a) due to pure point load		Relation between deflection, slope, radius of curvature, shear force, bending moment	Members subjected to combined bending and axial loads
S-2		Stress-strain diagram Elastic constants and their relationship		rigidity & power transmitted		Expression for crippling load with different end conditions based on Euler's theory
5-2	SLO-2	Volumetric strain	moment diagrams for cantilever beam	Problems on solid shaft, finding dimensions		Problems on crippling load with different end conditions based on Euler's theory
S-3		Bars of uniform and varying sections subjected to single loads	Shear force, bending moment diagram for simply supported beam: (a) due to pure point load		•	Expression for crippling load by Rankine's theory
			(b) due to pure Uniformly Distributed Load (c) pure Uniformly Varying Load	(b) hollow circular shaft subjected to torsion.	(h) Linitormiv Distributed Load	Problems on crippling load by Rankine's theory
S-4	SLO-1	Tutorial on stress, strain, Hooke's law, elastic constants and volumetric strain	Tutorial on Shear force, bending moment diagrams for simply supported beam	Tutorial on hollow shaft (a) finding dimensions,	Tutorial on Slope, deflection of cantilever beam with (a) a point load	Tutorial on crippling load by Rankine's theory
0-4	SLO-2	Tutorial on bars of uniform and varying sections subjected to single, multiple loads	Tutorial on Shear force, bending moment diagrams for simply supported beam	(b) percentage of material savings	(b) Uniformly Distributed Load	Tutorial on crippling load by Rankine's theory
S-5	SLO-1	Analysis of bars of composite sections	Shear force, bending moment diagram for overhanging beam due to(a)pure point load	Circular chaffe in corioc	Slope and deflection of simply supported beam with (a) a point load	Thin cylindrical shells subjected to internal pressure
3-0	SLO-2	Analysis of bars of composite sections	(b)pure Uniformly Distributed Load (c) pure Uniformly Varying Load	U ircular snaπs in narallel	(b) a Uniformly Distributed Load (Double integration method)	Change in dimensions of thin cylindrical shells due to internal pressure
S-6	SI 0-1	Problems on Analysis of bars of composite sections	Problems on Shear force and bending moment diagrams for overhanging beam		Problems on Slope and deflection of simply supported beam with (a) a point load	Problems on thin cylindrical shells subjected to internal pressure

		Problems on Analysis of bars of composite	Problems on Shear force and bending	Problems on Circular shafts in series and	(b) Uniformly Distributed Load (Double	change in dimensions of thin cylindrical
	SI ()-2		moment diagrams for overhanging beam			shells due to internal pressure
S-7	SLO-1	Concept of Thermal stresses in simple bars	0 0 0	Concepts on Strain energy due to tersion	Slope and deflection of simply supported beam with (a) a point load	Thin spherical shells subjected to internal pressure
3-1	SLO-2	Concept of Thermal stresses in composite bars	Bending stress in beams of regular sections	Concepts on Strain energy due to torsion		Change in dimensions of thin spherical shells
S-8	SLO-1	Tutorial. on Thermal stresses in simple and	5	Tutorial on Strain energy due to torsion	Tutorial on Slope, deflection of simply supported beam with point load, Uniformly	Tutorial on thin spherical shells subjected to internal pressure, change in dimensions
0-0	SLO-2	composite bars	regular sections		Distributed Load	of thin spherical shells due to internal pressure
S-9	SLO-1	Principal plane, principal stress, Direct stress in two mutually perpendicular directions	Bending stress in beams having I- section	Solid circular shaft subjected to combined bending and torsion	Slope and deflection of cantilever beam with (a) a point load	Lame's theory on stresses in thick cylinders
3-9	SLO-2	Direct stress in two mutually perpendicular directions accompanied by a simple shear stress	Bending stress in beams having T- section	Hollow circular shaft subjected to combined bending and torsion	(b) Uniformly Distributed Load (Moment area method)	Lame's theory on stresses in thick cylinders
S-10			Problems on bending stress in beams having I and T sections	Problems on circular shaft subjected to combined bending and torsion	Slope and deflection of simply supported beam with (a) point load	Problems on Lame's theory on stresses in thick cylinders
5-10			Problems on bending stress in beams having I and T sections	Problems on circular shaft subjected to combined bending and torsion	(b) Uniformly Distributed Load (Moment area method)	Problems on Lame's theory on stresses in thick cylinders
S-11	SLO-1	stress	Derivation of shear stress distribution in beams of different sections	Composite solid circular shaft	Castigliano's theorem	Stresses in compound thick cylinder and Shrink fit
	SLO-2	Mohr's circle: direct stress in two mutually perpendicular directions with shear stress	Derivation of shear stress distribution in beams having I and T sections	Composite hollow circular shaft	Maxwel's reciprocal theorem	Problems on stresses in compound thick cylinder
S-12	SLO-1 SLO-2	Tutorial on direct stress in two mutually perpendicular directions	Tutorial on shear stress distribution in beams of different sections such as I and T	Tutorial on composite circular shafts	Tutorial on Castigliano's and Maxwel's reciprocal theorem	Tutorial on stresses in compound thick cylinder and Shrink fit

ed., McGraw Hill, 2014 Learning William A. Nash, Theory and Problems of Strength of Materials, Schaum's Outline Series, 3rd ed., McGraw Resources 2. Hill, 2007

Egor P. Popov, Engineering Mechanics of Solid, 2nd ed., Prentice Hall of India Pvt. Ltd., 2009 James M. Gere, Mechanics of Materials, 8th ed., Brooks/Cole, USA, 2013 Shigley. J. E., Applied Mechanics of Materials, International Student edition, McGraw Hill, 2000

4. 5.

	Dia ami'a			Conti	inuous Learning Ass	essment (50% weigh	ntage)			Final Examination	(EOV) weightage)
	Bloom's Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA – 3	3 (15%)	CLA – 4	(10%)#		n (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	100	) %	10	0%	100	)%	100	0%	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. R. Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in, rkpearls@yahoo.com	1.Dr. Shankar Krishnapillai, IIT Madras, skris@iitm.ac.in	1. Dr. M. Kamaraj, SRMIST
2. Dr. A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in	2.Dr. K. Jayabal, IIITDM, Kancheepuram, jayabal@iiitdm.ac.in	2.Mr. D. Raja, SRMIST

Course	18MEC107T	Course			NGINEERING	Cours	se	C	Professional Core	L	Т	Ρ	С
Code	TOWLETOPT	Name			GINEERING	Catego	ory	U	1101835101141 COTE	3	1	0	4
				1									
Pre-requisi	te 18MEC101T		Co-requisite	Nil		P	Progress	sive	Nil				
Courses	TOMEOTOTT		Courses				Course	s	140				
Course Offer	ing Department	Mechar	nical Engineering		Data Book / Codes/Standards	Re	efrigeratio	on Tal	bles &Psychrometric chart				
							-		•				

Course Learning Rationale (CLR): The purpose of learning this course is to:		earni	ng					Prog	ram L	earn	ing O	utcor	nes (	PLO)			
CLR-1: Analyze the sequence of operation of energy cycles	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14 15
CLR-2: Identify the fundamentals of Fuels and calculation of enthalpies										2							
CLR-3 : Analyze the performance testing of IC Engines	(Bloom)		-				arch			bilit							
CLR-4 : Apply the construction, principle of working and analysis of compressors		y (%)	t (%)	dge		ent	se			aina		Work		Ce			
CLR-5:       Analyze the working principle of refrigeration systems         CLR-6:       Utilize the fundamentals and psychrometric processes		enc	nen	Knowledge	s	mdo	ı, Re	Usage	е	Sustainability		m V		inance	ning		
CLR-6 : Utilize the fundamentals and psychrometric processes		Proficiency	Attainment	Å	Analysis	Development	Design,	I Us	Culture	∞ŏ		Team	tion	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	arni		
		L P	d At	ing	Ana	& De		Tool	s Cl	nen		al &	nicat	Mgt.	g Le		
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering	Problem	Design 8	Analysis,	Modern .	Society &	Environment	Ethics	Individual &	Communication	Project N	Life Long	PSO - 1	PSO - 2 PSO - 3
CLO-1: Identify the basic operations required for energy release and method to calculate the efficiency	2	85	80	Н	Н	М	М	М	Ĺ	L	L	М	М	М	М	М	M M
CLO-2: Comprehend the Fuel properties and its applications	2	85	80	Н	Н	М	М	М	L	L	L	М	М	М	М	М	M M
CLO-3: Analyze the performance of IC Engines		85	80	Н	Н	М	М	М	L	L	L	М	Μ	М	М	М	M M
CLO-4: Identify the construction, operation of compressors, their performance evaluation	3	85	80	Н	Н	М	М	М	L	L	L	М	Μ	М	М	М	M M
CLO-5: Comprehend the types of refrigeration systems and evaluate its performance	2	85	80	Н	Н	М	М	М	L	L	L	М	М	М	М	М	M M
CLO-6: Analyze the fundamental processes of air conditioning systems and do fundamental calculations		85	80	Η	М	M	M	M	Ĺ	L	L	М	М	М	М	М	M M

Durat	ion (hour)	12	12	12	12	12
S-1	SLO-1	Introduction to air standard cycles	Introduction to fuels, Solid fuels	Classification of IC engines	Classification of Air Compressors	Vapor compression refrigeration system and its working principle
3-1	SLO-2	Air standard efficiency, Assumptions	Liquid fuels	Basic operations	Construction and working of reciprocating compressor	Refrigerants and properties
S-2	SLO-1	Otto cycle: Air standard efficiency	Gaseous fuels, Fuel properties	Actual p-v diagram of four stroke SI engines	Compression with clearance volume	Eco-friendly refrigerants
3-2	SLO-2	Mean effective pressure	Stoichiometric air fuel ratio	Actual p-v diagram of four strokeCl engines	Compression without clearance	Analysis of vapor compression refrigeration cycle
S-3	SLO-1	Power developed	Theoretical air and excess air.	Comparison of four stroke and two IC engines	Equation for work-Single acting reciprocating compressor	P-h Chart
3-3	SLO-2	Tutorials on Otto cycle	Air fuel ratio from analysis of products	Comparison of CI and SI Engines	Volumetric efficiency of compressor	Sub-cooling and superheating phenomena in VCR cycle
S-4	SLO-1	Tutorials on Otto cycle	Conversion between volumetric analysis to weight analysis	Engine Performance parameters	Tutorial problems on single stage compressor with clearance	Tutorial: Numerical problems on VC refrigeration system
3-4	SLO-2	Diesel cycle: Air standard efficiency	Analysis of exhaust and flue gas	Measurements of fuel consumption	Tutorial problems on single stage compressor without clearance	Tutorial: Numerical problems on VC refrigeration system
	SLO-1	Mean effective pressure	Internal energy and enthalpy of formation	Measurements of air consumption	Free air delivered	Simple vapor absorption refrigeration system
S-5	SLO-2	Power developed	Determination of calorific values of the fuel- Solid fuel and liquid fuel.	Measurement of brake power	Free air delivered	Simple vapor absorption refrigeration system
S-6	SLO-1	Dual cycle: Air standard efficiency	Determination of calorific values of the fuel- Gaseous fuel	Measurement of in-cylinder pressure	Multistage compression	Properties of atmospheric air and Psychrometric chart
3-0	SLO-2	Mean Effective pressure	Tutorials on determination of calorific value	Tutorials on IC Engine performance	Multistage compression	Properties of atmospheric air and Psychrometric chart

S-7	SLO-1	Power developed	Tutorials on determination of calorific value	Tutorials on IC Engine Performance	Problems on multistage compression	Psychrometric processes. sensible heating and cooling
3-1	SLO-2	Tutorials on Diesel cycle	Tutorials on determination of calorific value	Tutorials on IC Engine Performance	Problems on volumetric efficiency	Psychrometric processes. sensible heating and cooling
S-8	SLO-1	Tutorials on Diesel cycle		Tutorial: Numerical problems on engine performance parameters	Tutorials on multi stage compression, FAD	Cooling and dehumidification
3-0	SLO-2	Tutorials on Dual cycle	Tutorial: Numerical problems on First law analysis	Tutorial: Numerical problems on engine performance parameters	Tutorials on multi stage compression, FAD	Heating and humidification
S-9	SLO-1	Problems on Mean effective pressure	Heat calculations using enthalpy tables	Heat balance sheet	Rotary compressors	Tutorial: Numerical problems on psychrometric processes
3-9	SLO-2	Comparison of Otto, Diesel and Dual cycles	Problem Solving in Heat calculations	Heat balance sheet	Vane compressor	Summer air conditioning system
S-10	SLO-1	Brayton cycle	Adiabatic flame temperature	Problems on Heat balance sheet	Roots blower	Winter air conditioning system
3-10	SLO-2	Brayton cycle efficiency	Adiabatic flame temperature	Problems on Heat balance sheet	Different compressors and features	Year-round air conditioning systems
0.44	SLO-1	Concept of Reheat in Brayton cycle	Chemical Equilibrium	Problems on Heat balance sheet	Reciprocating compressors and rotary compressors - comparison	Heat load and simple calculations
S-11	SLO-2	Concept of Regeneration in Brayton cycle	Chemical equilibrium calculations	Problems on Heat balance sheet	Reciprocating compressors and rotary compressors - comparison	Heat load and simple calculations
C 42	SLO-1	Tutorials on power developed		Engine performance curves: Constant speed engines	Tutorial: Numerical problems on multi stage compression	Tutorial: Numerical problems on psychrometric processes
S-12	SLO-2	Tutorials on power developed		Engine performance curves: Variable speed engines	Tutorial: Numerical problems on multi stage compression	Tutorial: Numerical problems on psychrometric processes

Learning Resources 

 1. Mahesh Rathore , Thermal Engineering, Tata McGraw Hill, 2012
 4. Rajput.R. K, Thermal Engineering, 10th ed., Laxmi Publications, 2015

 2. Eastop T. D., Mcconkey. A, Applied Thermodynamics for Engineering Technologists, 5th ed., Pearson Edition, 2009
 4. Rajput.R. K, Thermal Engineering, 10th ed., Laxmi Publications, 2015

 3. Kenneth A Kroos, Merle C. Potter, Thermodynamics for Engineers, Cengage learning, 2016
 4. Rajput.R. K, Thermal Engineering, 10th ed., Laxmi Publications, 2015

Learning Asses	sment											
	Bloom's		Continuous Learning Assessment (50% weightage) Final Examination (50% weightage)									
	Level of Thinking	CLA – 1	1 (10%)	CLA – 2 (15%) CLA – 3 (15%) CLA – 4 (10%)#							ii (50% weiginage)	
	Lever of Thinking	Theory	rry Practice Theory Practice T									
Level 1	Remember	40% - 30% - 30% - 30% - 30% -										
Level I	Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-	
Level 2	Apply	40 %		40 %		40 %		40 %		40%		
Leverz	Analyze	40 /0	-	40 /0	-	40 /0	-	40 /0	-	40%	-	
Level 3	Evaluate	20 %	20% - 30% - 30% - 30% -							30%		
Level 5	Create	20 %	-	30 /0	-	30 %	-	30 %	-	30%	-	
	Total	100	) %	100	)%	100	0 %	100 %				
#01A 4	an ba from any combination of theory Assimption Task Talka Nini Designts Care Chudias Call Chudy NOOCa Cartifications Care Banarate											

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr.R.Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in	1. Dr. R Velraj, IES, CEG, Anna University, Chennai, velrajr@annauniv.edu	1. Mr. G. Manikandaraja, SRMIST
2. Dr.A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in	2. Dr. Raju Abraham, NIOT, Chennai, abraham@niot.res.in	2. Dr. G. Kasiraman,SRMIST

Course Code	18MEC108T	Course Name		MATER	IALS TECHNOLOGY		Course Category		С				Pro	ofessio	onal C	Core					L 3	1	P 0	C 3
Pre-requis Courses Course Offe	I NIII	Mecha	nical Engineerin	Co-requisite Courses	18MEC111L Data Book / Codes/S	tandards	Prog Co Nil	ress urse		Nil														
	ning Rationale (CL	R): The pur	pose of learning	this course is to:	I		Le	arnir	ng					Prog	jram L	Learr	ning O	)utcoi	mes (l	PLO)				
					I salient features of iron-carbon syst		1	2	3		1 2	3	4	5	6	7	8	9	10	11	12	13	14	15
					heat treatment and surface hardeni	ng processes							_			⋧								
	ilize the mechanical						Ê	(%)	(%)				arch			stainability		~						
	entify about structure						(Bloom)		nt (9		ğ	Develonment	ese			tain		Work		ЪСе				
	cquire knowledge ab						g (B	ienc	mer		Me .		, R	Usage	e	Sus		۲ س		Finance	ing			
CLR-6 : Ut	ilize knowledge abo	ut mechanical	l behavior, phase	e diagrams, struct	ure, properties of materials and thei	r applications	Thinking	Proficiency	Attainment			Develop	Design,	I Ns	Culture	∞ŏ		Team	tion	∞	earning			
Course Lear	ning Outcomes (Cl	<b>_O):</b> At the e	end of this cours	e, learners will be	able to:		evel of Thir	xpected Pr	xpected At		ngineering Knowledge	esion & De	ഗ്		ociety & Cı	nvironment	thics	dividual &	ommunication	roject Mgt.	fe Long Le	so - 1	SO - 2	SO - 3

Course	Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expecte	Expecte		Enginee	Problen	Design	Analysi	Modern	Society	Environ	Ethics	Individu	Commu	Project	Life Lor	PSO - 1	PSO - 2	2
CLO-1	Interpret phase diagrams and correlate structure property relationships	2	90	85		Н	-	-	-	М	-	-	-	-	-	-	-	-	-	
CLO-2	Identify strengthening mechanism, effect of heat treatment and surface hardening on the properties of materials	3	90	85		Н	-	-	-	М	-	-	-	-	-	-	-	-		
CLO-3	Analyze failure of engineering materials	2	90	85		Н	Н	-	М	М	-	-	-	-	-	-	-	-	М -	
CLO-4	Select ferrous and non-ferrous alloys for various engineering applications	3	90	85		Н	-	-	-	-	-	L	-	-	-	-	L	-		
CLO-5	Apply advanced materials for specific applications based on their properties	2	90	85		Н	-	-	-	-	-	М	М	-	-	-	-	-	- L	
CLO-6	Interpret phase diagrams, analyze mechanical behavior of materials, select materials for various engineering applications	3	90	85	Г	Н	Н	-	М	М		М	М	-	-	-	1	-	MI	

Durati	on (hour)	9	9	9	9	9
	SLO-1	Crystal structures	Deformation by slip	Introduction to fracture	Properties of plain carbon steel	Introduction to Smart materials
S-1	SLO-2	Imperfection in solids: Point, line	Slip systems, critically resolved shear stress	Types of fracture in metals	Properties of tool steel and stainless steel	Types of Smart materials
S-2	SLO-1	interfacial and volume defects Solidification	Shear strength of perfect and real crystals,	Stress-strain behavior of metals	Dual phase steels: properties	Shape memory alloys
5-2	SLO-2	Nucleation and Growth	Concept of work hardening, Stages of work hardening	ceramics and polymers; True stress – true strain	Dual phase steels: processing, composition and applications	Properties of Nickel based and other superalloys
S-3	SLO-1	Dendritic growth	Solid solution strengthening	Hardness: Rockwell, Brinell, Vickers hardness	Brief introduction on High Strength Low Alloy (HSLA) steel	Classes of polymers
3-3	SLO-2	Segregation and Homogenization	Grain boundary strengthening, Hall-Petch relation	Impact test: Charpy and Izod	effects of microalloying elements	Properties and applications of PE, PP, PS, PVC, Teflon
S-4	SLO-1	Introduction to Solid solutions	Dispersion strengthening: Precipitation	Griffith's theory of brittle fracture	Transformation induced plasticity (TRIP) steel, its properties and applications	Classes of ceramics
3-4	SLO-2	Types and factors governing substitutional solubility based on Hume Rothery's rules	Particulates and Fibers	Griffith equation	Twinning induced plasticity (TWIP) steel, its properties and applications	Properties and applications of Al2O3, ZrO2, SiC, Si3N4, AIN
S-5	SLO-1	Introduction to Phase diagrams	Non-equilibrium phases	Stress intensity factor	Properties of cast irons: grey, white,	Types and classification of composite materials
3-5	SLO-2	Phase rules and its application	Martensite, Bainite	Fracture toughness, Ductile to brittle transition	Properties of cast irons: malleable and spheroidal cast irons	Reinforcement and matrix material, Rule of Mixture
	SLO-1	Interpretation of phase diagrams	Introduction to TTT	Introduction to Fatigue, S-N curve	Copper and copper alloys with their applications	Properties of MMC, CMC and PMC
S-6	SLO-2	Interpretation of phase diagrams	CCT diagrams, and their importance	Low and high cycle fatigue test	Copper, Brass, Bronze, Cupronickel, Muntz metal, Gun metal	Applications of MMC, CMC and PMC

S-7	SLO-1	Classification of phase diagram	Heat treatment processes: Annealing, Normalizing,	Stages of fatigue		Nanocrystalline materials, Classification based on dimension with examples,
5-7	SLO-2	Classification of phase diagram	Tempering, Quenching	High temperature fracture, Creep curve	Age hardening, Different alloy series	CNT, graphene and their applications
S-8	SLO-1	Iron Iron-carbide phase diagram	Case hardening: carburizing,	Failure analysis' sources of failure	Magnesium alloys – advantages and problems	Biomaterials - applications, Types - metals, ceramics
3-0	SLO-2	Iron Iron-carbide phase diagram	nitriding, cyaniding, carbo-nitriding	Procedure of failure analysis	Magnesium alloys – Types and designations	polymers and composites, Biocompatibility
S-9	SLO-1	Microstructural aspects and invariant reactions in Fe-C diagram	Flame and induction hardening	Introduction to Non-Destructive Testing (NDT)	Titanium alloys - $\alpha$ , $\beta$ and $\alpha$ + $\beta$ alloys	Introduction to structure and characterization of materials
SLO-2 Microstructural aspects and invariant reactions in Fe-C diagram Effect of hardening processes on hardness Liquid penetrant testing, Magnetic particle applications, Properties and applications XRD, SEM and TEM						
		1. Flake.C Campbell, Elements of Metall	urgy and Engineering Alloys, ASM Internation		ady, Henry R. Clauser, JhonA.Vaccari, Mater	ials Science Hand Book, McGraw-Hill, 2002

Learning Resources	<ol> <li>Flake. C Campbell, Elements of Metallurgy and Engineering Alloys, ASM International, 2008</li> <li>Dieter. G.E., Mechanical Metallurgy, McGraw Hill, Singapore, 2001</li> <li>Thomas H. Courtney, Mechanical Behaviour of Engineering materials, McGraw Hill, Singapore, 2000</li> <li>Flinn.R.A., Trojan.P.K, Engineering Materials and their applications, Jaico, Bombay, 1995</li> <li>Budinski.K.G, Budinski.M.K, Engineering Materials Properties and selection, Prentice Hall of India, 2004</li> <li>ASM Metals Hand book, Failure analysis and prevention, Vol: 10, 14th ed., New York, 2002</li> <li>Reza Abbaschian, Lara Abbaschian&amp; Robert E. Reed-Hill, Principles of Physical Metallurgy, Cengage Learning, 2010</li> <li>Michelle Addington and Daniel Schodek, "Smart Materials and New Technologies", Elsevier print, 2005</li> </ol>	<ol> <li>George S. Brady, Henry R. Clauser, JhonA.Vaccari, Materials Science Hand Book, McGraw-Hill, 2002</li> <li>Sidney H Avnar, Introduction to physical metallurgy, 2nd ed., Tata McGraw-Hill, 1997</li> <li>William D. Callister, David G. Rethwisch, Materials Science and Engineering: An Introduction, 8th ed., Wiley publication, 2009</li> <li>Donald R. Askeland, Wendelin J. Wright, Science and Engineering of Materials, 7th ed., Cengage Learning, 2011</li> <li>Donald R. Askeland, Wendelin J. Wright, Essentials of Materials Science &amp; Engineering, 3rd ed., Cengage, 2013</li> <li>Raghavan V. Physical Metallurgy: Principles and Practice, Prentice Hall of India, 2012</li> <li>Polmear I. Light Alloys: From Traditional Alloys to Nanocrystals, Butterworth-Heinemann, UK, 2005</li> </ol>
-----------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

	Bloom's			Cont	inuous Learning Asse	essment (50% weigl	htage)			Einal Examination	(50% weightage)
		CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	4 (10%)#		i (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Understand Apply										
Level 2	Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate	30 %	_	30 %	_	30 %	_	30 %	_	30%	-
Level 5	Create		-				-				
	Total	100	) %	10	0 %	100	) %	10	0 %	10	) %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. R. Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in, rkpearls@yahoo.com	1. Dr. P. Hariharan, Anna University, hari@annauniv.edu, hariharan2311@gmail.com	Dr. ShubhabrataDatta, SRMIST
2. Dr. A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in	2. Dr. N. Arunachalam, IIT Madras, chalam@iitm.ac.in	Mr. D. Selwyn Jebadurai, SRMIST

Course Code	18MEC109L	Course Name		MATERIALS LABORATORY		ourse egory		С				Prof	essio	nal Co	ore					L 0		P 2	C 1	
Pre-requi Course				Co-requisite Courses	18MEC206T		Prog Co	ressi urses																
Course Of	ering Department	Mechar	ical Engineering	g	Data Book / Codes/Stan	Idards	Nil																	
Course Lea	arning Rationale (CL			Le	arnin	g				I	Progr	am Lo	earni	ng Oı	utcom	nes (F	PLO)							
CLR-1: /	dentify the procedure	s for conductir			1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
CLR-2 :       Identify the concept of hardness and influence of heat treatment         CLR-3 :       Utilize mechanical properties of various materials under different loading         CLR-4 :       Utilize behavior of materials under cyclic loading         CLR-5 :       Identify the aspects of testing the strength of various materials under different loading conditions         CLR-6 :       Utilize destructive tests to determine strength of materials under externally applied loads							f Thinking (Bloom)	ed Proficiency (%)	ed Attainment (%)	Engineering Knowledge	Problem Analysis	& Development	s, Design, Research	Modem Tool Usage	Cultu	ment & Sustainability		ial & Team Work	Communication	Mgt. & Finance	ng Learning	1	2	3
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:							Level of	Expected	Expected	Engine	Probler	Design	Analysis,	Modem	Society &	Environment	Ethics	Individual &	Commu	Project	Life Long I	- OS4		PSO - 3
CLO-1: /								80	85	Н	Н	М	М	Н	-	-	-	Н	-	-	-	-	-	-
								80	85	Н	Н	М	М	М	-	-	-	Н	-	-	-	-	-	-
	0 0 1 0							80	85	Н	Н	М	М	Н	-	-	-	Н	-	-	-	-	-	-
								80	85	Н	Н	М	М	М	-	-	-	Н	-	-	-	-	-	-
	, , , , , , , , , , , , , , , , , , , ,						3	80	85	Н	Н	М	М	М	-	-	-	Н	-	-	-	-	-	-
CLO-6 : (							3	80	85	Н	Н	М	М	М	-	-	-	Н	-	-	-	-	-	-

Dura	ation (hour)	6	6	6	6	6
S-1	SLO-1 SLO-2	Tensile test on Mild steel rod	Test on open coil springs	Torsion test on Graded steels	Double shear test on metallic materials	Bend test of metallic rods
S-2	SLO-1 SLO-2	Tensile test on Mild steel rod	Test on closed coil Helical springs	Torsion test on Graded steels	Double shear test on metallic materials	Bend test of metallic rods
S-3		Compression test of Concrete cubes	Izod impact test	Deflection test on beams of different materials	Rockwell & Brinell hardness test of metallic materials	Fatigue testing of materials under notched conditions
S-4	SLO-1 SLO-2	Compression test of Cylinders	charpy impact test	Deflection test on beams of different materials	Rockwell & Brinell hardness test of metallic materials	Fatigue testing of materials under un- notched conditions
S-5		Comparison of mechanical properties of Unhardened specimen	Strain measurement on rods using rosette strain gauge	Measurement of pressure on thin walled cylinders using strain gauge.	Buckling analysis of struts	Study on photo elasticity
S-6		Comparison of mechanical properties of Quenched and tempered specimen		Measurement of pressure on thin walled cylinders using strain gauge.	Buckling analysis of struts	Study on photo elasticity
Learning Resources 1. Ferdinand Beer, E. Russell Johns		1. Ferdinand Beer, E. Russell Johnston,	Jr., John DeWolf, David Mazurek, Mechanics	s of Materials, 7th ed., McGraw - Hill, 2013	2. Kazimi S. M. A, Solid Mechanics, 2nd 3. Laboratory Manual	ed.,Tata McGraw Hill, 2001

Learning Asse	essment										
	Dia ami'a			Conti	nuous Learning Ass	essment (50% weig	htage)			Einal Examinatio	n (E00/ weightege)
	Bloom's	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#		n (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	-	30 %	-	30 %	-	30 %	-	30 %	-	30%
Level 2	Apply Analyze	-	40 %	-	40 %	-	40 %	-	40 %	-	40%
Level 3	Evaluate Create	-	30 %	-	30 %	-	30 %	-	30 %	-	30%
	Total	10	0 %	10	0 %	10	0 %	10	) %	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. R. Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in, rkpearls@yahoo.com	1.Dr. Shankar Krishnapillai, IIT Madras, skris@iitm.ac.in	1. Dr. P. Nandakumar, SRMIST
2. Dr. A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in	2.Dr. K. Jayabal, IIITDM, Kancheepuram, jayabal@iiitdm.ac.in	2. Mr. A. Vinoth, SRMIST

Course Code	18MEC110L		urse me	HEAT P	OWER LABORATORY	-	ourse itegory		С				Profess	sional	Core					P 2	C 1		
Pre-requ Cours				Co-requisite Courses	18MEC107T			gress ourse															
Course Of	fering Department	. /	Mechanical Engineerir	ng	Data Book / Codes/Sta	indards	Nil																
Course Le	arning Rationale (	<b>CLR):</b> 7	The purpose of learning	g this course is to:			L	earni	ng				Pro	gram	Learr	ning O	utcor	nes (l	PLO)				
CLR-1 :	Analyze componen	ts and fun	ctions of IC Engines				1	2	3	1	2	3	4 5	6	7	8	9	10	11	12	13	14	15
CLR-2 :	Utilize the propertie		(Bloom)	(%)	%)	Ð		t					¥										
	R-3: Analyze performance and heat balance test on IC engines								Attainment (%)	Engineering Knowledge		Development Design	a				Work		Finance				
CLR-4 :									ame	No	SIS.	n pr		e e			Team	_	ina	ing			
CLR-5 :	Analyze performan	ce test on	steam power plant an	d air compressor			Thinking	Proficiency	ttair	푄	Analysis	Develop		Culture	t &	5		atior	∞ŏ	earning			
CLR-6 :	Utilize operations a	nd perforn	nance of Internal com	bustion engines, a	ir compressors and steam power plan	t	Ē		-	Bring	U An	× 10	- L	- 8	mer		ndividual &	ommunication	^o roject Mgt.				
							el of	Expected	Expected	inee	Problem	ign	searc	iety	iron tain	S S	vidu	nmr	ect	Long	-1	) - 2	) - 3
Course Le	arning Outcomes	(CLO): A	At the end of this cour	se, learners will be	e able to:		Level	Exp	БХр	Eng	E L	Design	Res	Society	Environment &	Ethics	ipdi	Con	Proj	Life	PSO	PSO	PSO
CLO-1 :	Identify the compor	ents and i	functions of IC Engine		2	95	85	Н	М		M -	-	-	-	Н	-	-	-	Н	-	-		
CLO-2 :	Analyze the proper	ties of lubr	ricants and fuels	nts and fuels						Н	Н	-	L -	-	-	-	Н	-	-	-	-	L	-
CLO-3 :	Conduct performan	ce and he	at balance test on IC	balance test on IC engines					85	Н	Н	М	L M	- 1	-	-	Н	-	-	-	-	М	-
CLO-4 :	Conduct Morse, ret	ardation a	nd emissions test		3	95	85	Н	Н	-		-	-	-	Н	-	-	-	-	-	М		
CLO-5 :	Analyze performan	ce test on	steam power plant an		3	95	85	Н	Н	-		-	-	-	Н	-	-	-	-	Н	Н		
CLO-6 :	Analyze operations	and perfo	rmance of Internal co	nce of Internal combustion engines, air compressors and steam power plant					85	Н	Н	М	L -	-	-	-	Н	-	-	-	Н	-	-

Durati	ion (hour)		6	6	6	6
S 1-2	SLO-1 SLO-2	Components of Internal combustion engine	Determine viscosity using Redwood viscometer	· · · · · · · · · · · · · · · · · · ·	Heat balance test on four stroke diesel engine with calorimeter	Heat balance test on boiler
S 3-4	SLO-1 SLO-2	Valve timing diagram of IC Engines	Determine viscosity using Saybolt	shood diasal andina with	Heat balance test on four stroke diesel engine without calorimeter	Performance test on steam turbine
S 5-6	SLO-1 SLO-2	Port timing diagram of IC Engines			,	Performance test on two stage reciprocating air compressor

Learning Resources

1. Ganesan. V, Internal Combustion Engines, Tata McGraw-Hill, New Delhi, 2015

Mathur.M. L, Sharma. R. P, A course in Internal Combustion Engines, DhanpatRai & Sons, 2010
 Laboratory Manual

	Bloom's			Conti	nuous Learning Asse	essment (50% weig	htage)			Final Examination	n (EO0/ woightage)
		CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#		n (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember		40 %		30 %		30 %		30 %		30%
Level I	Understand	-	40 %	-	30 %	-	30 %	-	30 %	-	30%
Level 2	Apply		40 %		40 %		40 %		40 %		40%
Leverz	Analyze	-	40 /0	-	40 /0	-	40 /0	-	40 /0	-	4070
Level 3	Evaluate		20 %		30 %		30 %		30 %		30%
Level 3	Create	-	20 %	-	30 %	-	30 %	-	30 %	-	30%
	Total	10	0%	10	0%	10	0%	10	0%	10	0%

# CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers

Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. R. Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in	<ol> <li>Dr. R Velraj, IES,CEG, Anna University, Chennai, velrajr@annauniv.edu</li> </ol>	1.Dr. G. Balaji, SRMIST
2. Dr. A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in	2. Dr. Raju Abraham, NIOT, Chennai, abraham@niot.res.in	2.Dr. D. Sivakrishna Reddy, SRMIST

Course Code	18MEC111L	Course Name	Ν	IATERIALS TE	ECHNOLOGY LABORATORY	Course Category	С	Professional Core	Т 0	P 2	C 1
Pre-requis Courses	INII		C	Co-requisite Courses	18MEC108T	Progre		, Nil			
Course Offer	ring Department	Mechan	ical Engineering		Data Book / Codes/Standards	Nil					

Course Learning Rationale (CLR): The purpose of learning this course is to:	L	earnii	ıg					Progr	am L	earni	ing O	utcor	nes (l	PLO)				
CLR-1: Utilize the concepts and need of specimen preparation and procedures to be followed for microscopic observation	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14 15	,
CLR-2: Identify and utilize the microstructure of various metals, alloys and its metallurgical properties										N.								
CLR-3: Utilize heat treatment process for various applications	Ê	(%	-				arch			pilit								
CLR-4 : Evaluate heat treatment impact on hardness and micro structural changes	(Bloom)	cy (%	it (%)	dge		ent	ese			aine		Work		g				
CLR-5: Analyze the wear behavior and understand stress acting on a tensile specimen	g (B	ē	Attainment	2 Me	s	Development	n, Re	age	ø	Sustainability		eam V		Finance	g			
CLR-6: Utilize the knowledge for identifying metals, alloys based on microstructure and analyze the effect of heat treatment	hinking	oficiel	tain	Knc	Analysis	velo	Design,	Us:	Culture	~ð		Теа	ion	~ð	aming			
	Thir	μΡ		ing	Ana	& De	De	Tool Usage	& CL	nent		8	licat	Mgt.	) Le			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering Knowledge	Problem.	Design 8	Analysis,	Modern .	Society 8	Environment	Ethics	Individual	Communication	Project N	Life Long	PS0-1	PSO-2 PSO-3	
CLO-1: Identify concepts of specimen preparation for microscopic observation	1	95	90	Н	-	-	I	Н	-	-	-	Н	-	-	-	L		
CLO-2: Identify microstructure of various metals, alloys and micro structural changes for various heat treatment processes	1	95	90	Н	-	-	Μ	Н	-	-	-	М	-	-	-	L		
CLO-3 : Evaluate hardness and analyze the effect of heat treatment processes	2	95	90	Н	-	-	Н	Н	-	-	-	М	-	-	-	Н	- H	
CLO-4 : Analyze the effects of heat treatments and properties of GC Iron and SG Iron	3	95	90	Н	-	-	Н	М	-	-	-	Н	-	-	-	Н	- H	
CLO-5: Analyze wear behavior and understand stress acting on a tensile specimen	2	95	85	Н	Н	-	Н	Н	-	-	-	Н	-	-	-	Н	- H	
0-6: Identify metals, alloys based on microstructure, analyze effect of heat treatment on hardness and microstructural change			90	Н	-	-	Н	Н	-	-	-	М	-	-	-	Н	- H	

Du	ration (ho	ur) 6	6	6	6	6
S 1-2	SLC	Study the Mounting Process Preparing the sample for identification under microscope	Identify Alloy - Steel based alloys	Identify various heat treatment for MCS	Jomny End quenched Steel	Coating thickness Evaluation
	2 SLC					
S 3-4		- Identify Metal - Plain Carbon steel		Various heat treated steels like Quenched, Normalised, annealed, Tempered	Micro Vickers Tester	Analyze various stress using tensometer
	4 SLC					
S 5-6	SLC	Identify Metal - Cast iron	Identity Alloy J ight Metal alloys	Case hardened steel- Induction Hardened and Laser Hardened	properties of GC Iron and SG Iron	Wear analysis using Pin-on-disc
	SLC	-2				

Learning 1 Resources 2	<ol> <li>Sidney H Avnar, Introduction to physical metallurgy, 2nd ed., Tata McGraw-Hill, 1997</li> <li>Donald R. Askeland, Wendelin J. Wright, Science and Engineering of Materials, 7th ed., Cengage Letter Science and Engineering of Materials, 7th ed., Cengage Letter Science and Engineering of Materials, 7th ed., Cengage Letter Science and Engineering of Materials, 7th ed., Cengage Letter Science and Engineering of Materials, 7th ed., Cengage Letter Science and Engineering of Materials, 7th ed., Cengage Letter Science and Engineering of Materials, 7th ed., Cengage Letter Science and Engineering of Materials, 7th ed., Cengage Letter Science and Engineering of Materials, 7th ed., Cengage Letter Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science and Science a</li></ol>	3. ASTM standards Aming, 2011 4. Laboratory Manual
---------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------

Learning Asse	essment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Einal Examination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	l (10%)#		i (50% weightage)
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	-	40 %	-	30 %	-	30 %	-	30 %	-	30%
Level 2	Apply Analyze	-	40 %	-	40 %	-	40 %	-	40 %	-	40%
Level 2	Evaluate		20.0/		20.0/		20.0/		20.0/		200/
Level 3	Create	-	20 %	-	30 %	-	30 %	-	30 %	-	30%
	Total	100	) %	10	) %	10	0 %	10	0 %	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. R. Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in, rkpearls@yahoo.com	1. Dr. P. Hariharan, Anna University, hari@annauniv.edu, hariharan2311@gmail.com	1. Mrs. R. Ambigai, SRMIST
2. Dr. A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in	2. Dr. N. Arunachalam, IIT Madras, chalam@iitm.ac.in	2. Dr. U. Mohammed Iqbal, SRMIST



Course Code	18MHC101J	Course Name	MECH	HANICS OF SOLID	S AND FLUIDS	Course Category	С	Professional Core	L 3	T 0	P 2	C 4
Pre-requis Courses	NII		Co-requ Cours	NII		Progre Cour	NII					
Course Offe	ring Department	Mechai	ronics Engineering		Data Book / Codes/Standards	Nil						

Course Learning Rationale (CLR): The purpose of learning this course is to:	L	earni	ng	Program Learning Outcomes (PLO)															
CLR-1: Understand the behavior of materials under load	1	2	3		1 2 3 4 5 6 7 8 9 10 11 12 13 1						14 1	5							
CLR-2: Identify types of beam and understand their deflection under different types of load											/								
CLR-3: Understand the behavior of materials under torque	-							arch			Sustainability								
CLR-4 : Analyze the buckling load for columns with different support conditions.	(Bloom)	(%) /	t (%)		ge		art				aina		Work		8				
<b>CLR-5</b> : Analyze the physical behavior of fluids using the concepts of continuity equation and Bernoulli's theorem.	B	Suc	nen		wlea	6	bme	, Res	age		usta		am W		Finance	g			
CLR-6 : Explain the basic idea of dimensional analysis	king	Proficiency	Attainment		х У	lysi	Development	Design, I	Us	Culture			Tear	ы	ĭ⊒ ⊗	earning			
	Thinking	Pro Pro			ing	Analysis		De	Tool Usage	& Cu	nent		۰ð	icati	Mgt	1			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of ⁻	Expected	Expected		Engineering Knowledge	Problem	Design &	Analysis,	Modern 7	Society 8	Environment &	Ethics	Individual	Communication	Project M	Life Long	PSO-1	0 0	PSO-3
CLO-1: Estimate the different types of stress induced in material	3	90	85		Н	Н	М	-	L	-	-	-	Н	-	-	-	Н	- H	Н
CLO-2: Analyze the shear force and bending moment in beam	3	85	80	Γ	Н	Н	М	-	L	-	-	-	Н	-	-	-	Н	- H	Н
CLO-3: Calculate torque induced in shaft	3	90	85		Н	Н	М	-	L	-	-	-	Н	-	-	-	Н	- H	Н
CLO-4 : Analyze the buckking of column.	3	85	80		Н	Н	М	-	L	-	-	-	Н	-	-	-	Н	- I	1
CLO-5: Dertermine the coefficient of discharge of different devices	3	85	80	Γ	Н	Н	М	-	L	-	-	-	Н	-	-	-	Н	- H	Н
CLO-6 : Estimate losses in pipes	3	85	80		Н	Н	М	-	L	-	-	-	Н	-	-	-	H	- H	1

		Stress, Strain and Deformation of Solids	Transverse Loading on Beams, Shear Force and Bending Moment	Torsion and Columns	Fluid Flow Concepts and Dynamics of Fluids	Dimensional Analysis and Flow through Pipes
Durati	on (hour)	15	15	15	15	15
S-1		Concept of stress-strain and its types, Hooke's law, modulus of elasticity	Types of beams and loadings, shear force and bending moments	Theory of torsion	Introduction to Fluids Mechanics	Introduction of Dimensions and units
3-1	SLO-2	Factor of safety, Poisson's ratio, elastic constants and their relationship	Sign convention for shear force and bending moments	Derive torsional equation		Concepts of dimensional homogeneity, Rayleigh method
		Analysis of bars of uniform cross sections subjected to different loads	Analyze shear force, bending moment for cantilever beam with point load at free end	Analyze torque transmitted by a solid shaft	Application of fluid	Problems in Rayleigh method
S-2		Analysis of bars varying cross sections subjected to different loads	Analyze shear force, bending moment for cantilever beam with different loads at different points	Problems in Analysis of torque transmitted by a solid shaft	Basics numerical problem in fluid properties	Application of Rayleigh method
S-3		Problems in Analysis of bars of uniform cross sections subjected to different loads.	Problems in Analysis of shear force and bending moment for cantilever beam with	Analyze torque transmitted by a hollow shaft	Derivation of Continuity Equation	Introduction of Buckingham's Π theorem
3-3		Problems in Analysis of bars of varying cross sections subjected to different loads	Uniformly Distributed Load	Problems in Analysis of torque transmitted by a hollow shaft	Problems in velocity and discharge of fluids in pipe using continuity equation	Properties of Buckingham's Π theorem
S 4-5	SLO-1 SLO-2	Lab 1: Tensile test on mild steel	Lab 4: Charpy and Izod impact test on steel specimen	Lab 7: Torsional test on mild steel	Lab 10: Determine coefficient of discharge of Orificemeter	Lab 13: Verify Bernoulli's theorem
S-6	SLO-1	Principle of superposition	Analyze shear force and bending moment for simply supported beam with point loads	Analysis of strength of varying cross sections of shafts	Equations of motion, derivation of Euler's equation and Bernoulli's equation	Numerical problems in Buckingham's П theorem
3-0	SLO-2	Problems in Principle of Superposition	Analysis of shear force, bending moment for simply supported beam with UDL	Analysis of strength of varying cross sections of shafts		Advantage and disadvantage of Rayleigh method and Buckingham's Π theorem
S-7		Analyze uniform and varying cross section of composite bar	Problems in cantilever beams	Problems in shafts with varying cross section	Problems in Euler's equation and Bernoulli's equation	Introduction of Losses in pipes
3-1		Problems in composite bar with uniform and varying cross section	Problems in simply supported beams	Problems in shafts with varying cross section	Assumptions and Disadvantages of Bernoulli's equation	Types of losses, analysis of Minor losses in pipes

• •	SLO-1		Analyze shear force, bending moment for overhanging beam with point loads and UDL	Types of columns, applications	Application of Bernoulli's equation	Problems in Minor losses
S-8	SLO-2		Analyze shear force, bending moment for overhanging beam with point loads and UDL	Expression for buckling load of columns with different support conditions	Introduction to Venturimeter	Problems in Minor losses
S 9-10	SLO-1 SLO-2	Lab 2: Deflection test on different beams	Lab 5: Double shear and (or) Compression test	Lab 8: Fatigue test	Lab 11: Determine coefficient of discharge of Venturimeter	Lab 14: Determine Minor losses: Expansion and contraction losses in pipes
S-11	SLO-1	Principal plane and Principal stresses	Analyze maximum bending moment and point of contraflexure in overhanging beam	Determine buckling load for columns with different support conditions using Euler's formula	Derivation and assumption of Venturimeter	Introduction to Major losses in pipes
5-11	SLO-2		Analysis of maximum bending moment and point of contraflexure in overhanging beam	Determine buckling load for columns with different support conditions using Euler's formula		Problems in Darcy Weisbach and Chezy formula
		Analyze direct stresses in one plane and	Theory and assumption of simple bending in beam	Problem in buckling		Analyze discharge, velocity of fluids flows through pipes in series
S-12	SLO-2	two mutually perpendicular planes using Mohr's circle	Derivation of simple bending in a beam			Analyze discharge, velocity of fluids flows through pipes in parallel
S-13		Problems in Analysis of direct stresses in one plane and two mutually perpendicular	Numerical Problems in theory of simple bending in beam	Determine buckling load for columns with different support conditions using Euler's formula	Numerical Problems in Uniticemeter	Construction and working principle of centrifugal pump
	SLO-2	planes	Analysis of bending stress in symmetrical and unsymmetrical beam section	Problems in columns using Euler's formula	Application of Orifice meter	Construction and working principle of reciprocating pump
S 14-15	SLO-1 SLO-2	Lab 3: Deflection test on different beams	Lab 6: Charpy and Izod impact test on steel specimen	Lab 9: Fatigue test	Lab 12: Determine Major losses in pipe flow	Lab 15: Determine Minor losses: Expansion and contraction losses in pipes

Learning	1.	Bansal. R. K, Strength of Materials, 6 th ed., Lakshmi publications Pvt. Ltd., 2018
Resources	2.	Ramamurtham S and Narayanan R, Strength of Materials, 18th ed., DhanpatRai Pvt. Ltd., 2018
Resources	3.	Bansal. R. K, Fluid Mechanics and Hydraulic Machines, 10th ed., Laxmi publications (P) Ltd., 2018

Kumar. K. L, Engineering Fluid Mechanics, 8th ed., S. Chand and co limited, 2012
 Timoshenko. S. P., Gere .M. J, Mechanics of Materials, 5th ed., Stanley Thornes (PUB) Ltd, 1999.
 Strength of Material Laboratory Manual, SRMIST
 Fluid Mechanics Laboratory Manual, SRMIST

	Dia ami'a			Contir	nuous Learning Ass	essment (50% weigl	ntage)			Final Evantination	(FOO/ waishtaga)
	Bloom's	CLA – 1	1 (10%)	CLA – 2	2 (15%)	CLA – S	3 (15%)	CLA – 4	(10%)#	Final Examination	n (50% weightage)
L	_evel of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. K.Maheshwaran, Senior Engineer, TAFE, Chennai, maheshwaran@tafe.com	1. Dr. P. Karthikeyan, MIT campus, Anna university, pkarthikeyan@annauniv.edu	1. Ms. D. Gayathiri, SRMIST
2.R.Dhinesh Babu, Senior Engineer, Technofit SDN BHD.,dinesh@technofit.com	2. Dr.B.Mohan, Professor, Anna University, mohan@mitindia.edu	2. Mr. G. Balakumaran, SRMIST

Course Code	18MHC102T	Course Name	ELECTRICAL MACHINES	S AND ACTUATORS	Course Category	С	Professional Core	L 3	T 0	P 0	C 3
Pre-requisi Courses	18FES101.1		Co-requisite Courses	104L	Progre Cour		Nil				
Course Offer	ing Department	Mechati	onics Engineering	Data Book / Codes/Standards	Nil						

Course Learning Rationale (CLR): The purpose of learning this course is to:	L	earni	ing Program Learning Outcomes (PLO)														
CLR-1: Understand the construction and principle of operation of DC machines	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14 15
CLR-2: Understand the construction and principle of operation of AC machines										2							
CLR-3: Understand the construction and principle of operation of Special machines	Ê	(%					arch			pilit							
CLR-4: Identify different Control circuits for DC and AC motors	(Bloom)		t (%)	dge		ent	esear			ainé		Work		8			
CLR-5: Analyse the DC and AC machines for suitable applications	g (B	ency	Attainment	wle	s	Development	ı, Re	age	Ð	Sustainability				Finance	bu		
CLR-6 : Apply the Control circuits for different applications	kine	oficie	ain	Knc	lysi	velo	Design,	N	Culture	~ŏ		Team	ion	& ⊤	earning		
	Thinking	d Prof		ring	Analysis	& De	De.	Tool Usage	വ് മ	nen		~ŏ	lical	Agt.			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering Knowledge	Problem.	Design 8	Analysis,	Modern .	Society 8	Environment	Ethics	Individual	Communication	Project Mgt.	Life Long	PSO - 1	PSO - 2 PSO - 3
CLO-1: Operate different types of DC machines	3	75	70	Н	Н	-	-	-	L	-	-	-	-	-	М	-	
CLO-2: Operate different types of AC machines	3	75	70	Н	Н	-	-	-	L	-	-	-	-	-	М	-	
CLO-3 : Operate different types of Special machines	3	75	70	Н	М	-	-	-	L	-	-	-	-	-	М	-	
CLO-4 : Analyze the control circuits for suitable actuation	3	75	70	Н	-	М	М	М	L	-	-	-	-	-	М	-	
CLO-5 : Apply the different machines for suitable Applicatios	3	75	70	Н	-	М	М	М	L	-	-	Н	-	-	М	-	
<b>CLO-6</b> : Operate, analyze and apply different machines and control circuits for suitable applications	3	75	70	Н	-	М	М	М	L	-	-	H	-	-	М	-	

		DC Machines	Trandformers and Induction Motors	Synchronous and Special Machines	Thyrister for Controller for Actuators	Applications of Actuators
Durati	ion (hour)	9	9	9	9	9
S-1	SLO-1	DC machines: Introduction	Transformer: Construction	Synchronous motor	Introduction to Relays	Applications of actuators
3-1	SLO-2	Construction	Principle, Types of Transformers	Construction	Fuses and Circuit Breakers	Different types of drives
• •	SLO-1	Principle of operation	Emf equation	Synchronous motor	Introduction to Thyristor	Electric vehicles
S-2	SLO-2	Types of DC machines based on construction	Voltage regulation	Principle of operation	Thyristor Rectifier	DC drive with chopper control for electric vehicle
• •	SLO-1	Shunt Motor,	Simple problems in Transformers	Methods of starting Synchronous motor	Thyristor Choppers	Introduction to traction
S-3	SLO-2	Series Motor, Compound motor	Introduction to 3-phase system	Difference between Induction and Synchronous motors	Thyristor Choppers	chopper controlled traction drive
S-4	SLO-1	Back Emf, Voltage equations	Three phase induction motor construction	Applications of Synchronous motors	Thyristor Inverters	Robotic gripper
5-4	SLO-2	Torque equation, Simple Problems	principle of operation	Introduction to special machines	Applications of converters	Applications of robotic grippers
	SLO-1	Characteristics of D.C Shunt motor, Series motor	Production of RMF	PMDC motors: Construction	Thyristor controller starters	Introduction to mems
S-5	SLO-2	Speed Control Methods	Production of RMF	principle of operation	Electronic speed control methods for DC motors	Applications of mems actuators
S-6	SLO-1	Necessity of a starter	Torque-slip characteristics	Stepper motors: construction,	Thyristor speed control of DC Shunt Motor	Introduction to solenoids

	SLO-2	Types of Starters	Torque equation	principle of operation of VR, PM Stepper Motors	Thyristor speed control of DC Series Motor	Solenoid operated fuel injection systems
S-7	SLO-1	3 point Starters	Linear Induction Motors: Construction		Speed control of single phase Induction motor using Inverter	Stepper motor throttle actuators
3-1	SLO-2	3 point Starters	Principle of operation	Principle of operation	Speed control of single phase Induction motor using Inverter	Stepper motor throttle actuators
S-8	SLO-1	4 point Starters	Difference between Three phase and Single Phase induction Motors	BLDC motors: Construction	Electronic Speed control of Synchronous Motor	Actuators for capsule filling machines
3-0	SLO-2	4 point Starters	Difference between Three phase and Single Phase induction Motors	Principle of operation	Driver circuit for Stepper motors	Actuators for capsule filling machines
S-9	SLO-1	Braking methods- Dynamic and plugging	Introduction to Single Phase induction Motors	Servo Motors: Types, Construction	Unipolar drive for Variable reluctance	Actuators for Labelling Machines
3-9	SLO-2	Regenerative braking	Principle and operation of single phase induction motor		Bipolar drive for Permanent Magnet and Hybrid motors	Actuators for Labelling Machines

 Learning
 1.
 B. L Theraja, A. K. Theraja, A text book of electrical technology, Volume II, S.Chand Publications, 2008

 Resources
 2.
 S. K. Bhattacharya, S.Chatterjee, industrial Electronics and control, TTTI, Chandigarh

3. Gopal K.Dubey, Fundamentals of Electrical drives, Narosa publications 2014

Learning Ass	sessment											
	Bloom's			Final Examination (50% weightag								
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#		i (50% weightage)	
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	30 %	_	30 %	_	30 %	_	30 %	_	30%	_	
Level I	Understand	50 70	_	50 70	_	50 70	_	50 70	_	5070		
Level 2	Apply	40 %	-	40 %	_	40 %	_	40 %	_	40%	-	
	Analyze	40.70		40 70		40 70		40 70		4070		
Level 3	Evaluate	30 %		30 %		30 %		30 %		30%		
Level 5	Create	50 70	-	30 70	-	50 70	-	50 78	-	5070	-	
	Total	100	) %	10	) %	10	0 %	100	0%	100 %		
	n ha from any combinatio	a of the open Application	anta Caminana Tak	h Tallia Mini Duaia	to Coos Chudios C	alf Chudu MOOCa	Cartifications Cart	Denerate				

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. N. Gunavardhini, TANGEDCO, Salem, gunatneb1990@gmail.com	1. Dr. S. S. Dash, Government College of Engineering Kednhhar, Orisha, munu_dash_2k@yahoo.com	1. Dr. M. Santhosh Rani, SRMIST
2. Dr. S. Janardhanam, CAPGEMINI.	2. Dr. K. Sujatha, Dr. MGR Educational and Research Institute, drksujatha23@gmail.com	2. Dr. T. Muthuramalingam, SRMIST

Course Code	18MHC103T	Course Name	SOLID STATE	DEVICES AND CIRCUITS	Course Category	С	Professional Core	L 3	T 0	P 0	C 3
Pre-requisite Courses	18EES101J		Co-requisite Courses	18MHC104L	- 5	ressive urses	18MHC108L	<u>i</u>			
Course Offerin	g Department	Mechatronics En	ngineering	Data Book / Codes/Standards	Nil						

Course Learning Rationale (CLR): The purpose of learning this course is to:	L	earnii	ıg	g Program Learning Outcomes (PLO)					-										
CLR-1: Utilize the characteristics of semiconductor devices	1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Identify the different amplifier using 'h parameter and equivalent circuit'											y								
CLR-3: Build the various concepts of feedback and oscillators and multi vibrators	Ê		-					arch			abilit								
CLR-4: Utilize the various rectifier and regulator circuits	(Bloor	y (%	it (%)		dge		ent	Research			aine		Work		g				
CLR-5: Identify the different power supply circuits	g (B	Proficiency (%)	Attainment		wle	s	Development	, Re	age	ø	Sustainability		eam V		Finance	bu			
CLR-6: Gain knowledge on operational amplifiers and its basic applications	Thinking	ofici	tain		Кло	Analysis	velo	Design, I	N.	Culture	∞ð		Tea	ion	δ Έ	ami			
	Thir	Ъ			ring	Ana	& De	De.	Tool Usage	& CI	nen		al &	licat	Agt.	g Le			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected		Engineering Knowledge	Problem	Design 8	Analysis,	Modern	Society &	Environment	Ethics	Individual &	Communication	Project Mgt.	Life Long	PSO-1	PSO-2	PSO-3
CLO-1: Describe band theory of solids with special reference to semi-conductors.	2	75	70		Н	М	М	H	М	L	М	L	М	М	-	Н	Н	Н	Н
CLO-2: Design Amplifier using 'h' Parameters and Equivalent Circuits	3	75	70		Н	М	М	Н	М	L	М	-	М	М	L	Н	Н	Н	Н
CLO-3: Illustrate the various concepts of feedback and oscillators and multi vibrators	3	75	70		Н	М	М	М	L	L	М	L	М	М	L	Н	I	-	-
CLO-4 : Design various Rectifier and Regulator circuits	3	75	70		Η	М	М	-	L	L	М	L	-	М	L	Н	Н	Н	Н
CLO-5 : Evaluate the performance of Power Supply Circuits.			70		Η	М	М	Н	L	1	М	L	М	М	L	Н	I	-	-
CLO-6: Gain knowledge on operational amplifiers and its basic applications			70		Η	М	-	H	М	L	M	L	М	М	L	Н	H	Н	H

		Special Semiconductor Devices	Amplifier	Feedback Circuits	Switching Circuits and Power Supplies	Operational Amplifiers
Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	Semiconductor devices: Introduction	Introduction to amplifiers. Transistor as an amplifier, FET as an amplifier	Basic concepts of feedback	Basic about Switching action of transistor	Introduction to Operational amplifier
5-1	SLO-2	Classification of semiconductor devices	Types of Biasing	Types-Positive and negative feedback	Concept of Switching action of transistor	Ideal characteristics of op-amp
S-2	SLO-1	Characteristics of Zener diode	Self- biasing of transistor	Principle of feedback in amplifiers	Introduction of astable multivibrator	Internal block diagram of op-amp
5-2	SLO-2	Application of Zener diode	Fixed biasing, Voltage divider biasing	Principle of feedback in oscillators	Working principle of astable multivibrator	Slew rate of op-amp
S-3	SLO-1	Working principle, characteristics Schottky, diode PIN and Shockley diode	Small signal model of BJT	Voltage series network	Introduction of monostable multivibrator	Introduction about DC characteristics of op- amp
3-3		Applications of Schottky, diode PIN and Shockley diode	Two port network of BJT	Voltage shunt network	Working of monostable multivibrator	Concept of DC characteristics op- amp
S-4	SL0-1	Working principle, characteristics Tunnel diode	Hybrid parameter for BJT	Current series network	Introduction of bistable multivibrator	Introduction about AC characteristics of op- amp
3-4		Applications of Tunnel diode and varactor diode	h- parameter model for CE, CB and CC configuration	Current shunt network	Working of bistable multivibrator	Concept of AC characteristics op- amp
S-5	SLO-1	Working principle, characteristics Tunnel diode and varactor diode	h- parameter model for CE configuration and analysis for CE configuration	LC oscillator: Hartley oscillator - working principle	Circuit diagram of Schmitt trigger	Introduction of differential amplifier
3-3	510-2	Applications of Tunnel diode and varactor diode	Analysis for CE configuration	Hartley oscillator -derivation for the frequency of oscillation	Working of Schmitt trigger	Types of differential amplifier
S-6	SLO-1	Working principle, characteristics of thyristor: UJT	Power amplifiers: Class A working principle	Colpitt's oscillator - working principle	Introduction to Rectifiers and its types	Inverting buffer amplifier

SRM Institute of Science & Technology – Academic Curricula (2018 Regulations) - Control copy  $257\,$ 

	SLO-2	Applications of Thyristor: UJT	Class A derivation for the efficiency	Colpitt's oscillator - derivation for the frequency of oscillation	Regulators and its types	Non-inverting buffer amplifier
S-7	SLO-1	Working principle, characteristics of thyristor: SCR	Class B working principle	B working principle Clap oscillator - working principle		Basic applications: Inverting Summing amplifier
5-7	SLO-2	Applications of thyristor: SCR	Class B derivation for the efficiency	Clap oscillator - derivation for the frequency of oscillation	Circuit diagram and working of Shunt regulator	Non-Inverting Summing amplifier
S-8	SLO-1	Working principle, characteristics of DIAC	Class AB, Class C working principle	RC oscillator: RC Phase shift oscillator - working	Block diagram of SMPS	Subtractor
3-0	SLO-2	Applications of DIAL:	Class AB, Class C derivation for the efficiency	RC Phase shift oscillator - derivation for the frequency of oscillation	Working principle of SMPS	V-I and I-V converter
S-9	SLO-1	Working principle, characteristics of TRIAC	Tuned amplifiers	Wien bridge oscillator - working	Block diagram of UPS	Introduction and basic concept of Comparator
3-9	SLO-2	Applications of TRIAC	Types of Tuned amplifiers	Wien bridge oscillator - derivation for the frequency of oscillation	Working principle of UPS	Application of Comparator

David A Bell, Electronic devices and circuits, Oxford Publication., 2008 1. Learning 2. Resources

Robert Boylestad and Louis Nashelsky, Electronic devices and circuit theory, 7th ed., Prentice Hall., 2005 Roy Choudhury, Shail B. Jain, Linear integrated circuits, New Age International publishers, 2010 3.

J. B. Gupta, Electronic devices and Circuits, Sanjay Kumar Kattaria Publication, 2010 Milman., Halkias. C, Electronic devices and circuits, Tata McGraw Hill publications, 2001 4. 5.

Learning Assess	ment												
	Bloom's			Final Examination (50% weightag									
	Level of Thinking	CLA – 1	1 (10%)	CLA – 2	2 (15%)	CLA – 3	3 (15%)	CLA – 4	(10%)#		(50% weightage)		
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-		
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-		
Level 3	Evaluate Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-		
	Total 100 %			100	)%	100	)%	100	)%	100 %			

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr.S.AnandaKumar, Deputy Chief Engineer, Control and Instrumentation, TPS-2, NLC India Limited, sith.anandkumar@gmail.com	1. Dr. B. Chittibabu, IIITDM, Kanchipuram, bcbabu@iiitdm.ac.in	1. Mrs. V. Krithika, SRMIST
2.Mrs.T.Priya, Kavin Engineering and Services Private Limited, priya@kavinengg.com	2. Dr. P. Karthikeyan, MIT campus, Anna university, pkarthikeyan@annauniv.edu	2. Mr. K. Sridharan, SRMIST

Course         18MHC104L         Course         ELECTRICAL AND ELECTRONICS LABORATORY           Code         Name         ELECTRICAL AND ELECTRONICS LABORATORY	Course Category	С	Professional Core	
Pre-requisite Courses         18EES101J         Co-requisite Courses         18MHC102T           Courses         Data Really (Codes (Chandrada))         Data Really (Codes (Chandrada))	Progres Cours		Nil	
Course Offering Department Mechatronics Engineering Data Book / Codes/Standards	Nil			

Course Le	Course Learning Rationale (CLR): The purpose of learning this course is to:					Program Learning Outcomes (PLO)														
	CLR-1: Design the circuits using discrete components.						2	3	4	5	6	7	8	9	10	11	12	13	14 15	ز
CLR-2 :	Understand the basic conce	pts of integrated circuits and design circuits										У								
CLR-3 :	Understand the basic conce	epts and operation of DC machines	(mo		-				earch			abilit								
CLR-4 :	Understand the basic conce	epts and operation of AC machines	loo l	y (%)	it (%	dge		ent	s			aine		Vork		ge				
CLR-5 :	Improve their ability in selec	ting components for particular application	Thinking (Blo	Proficiency	Attainment (%)	Knowledge	s	Development	Design, Re	age	Ð	Sustainability		Team Work		Finance	ming			
CLR-6 :	Utilize characteristics of ser	niconductor devices, amplifiers, multivibrator and operational amplifiers and electrical drives	kinç	ofici	tain	Knc	Analysis	velo	sigr	Us;	Culture	<b>∞</b> ð		Теа	ion	α Έ	ami			
			Thi:	Ъ Р		ering	Ané	& De	, De	Tool Usage	န င	nent			licat	Agt.	g Le			
Course Le	earning Outcomes (CLO):	At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineel	Problem.	Design 8	Analysis,	Modern .	Society 8	Environment	Ethics	Individual &	Communication	Project Mgt.	Life Long	PS0-1	PSO-2 PSO-3	5
CLO-1 :	Implement the functionality	of the circuits using discrete components	2	85	80	Н	-	-	-	Н	-	Н	-	Н	Н	-	-	-		
CLO-2 :					80	Н	-	-	Н	Н	-	Н	-	Н	Н	-	-	-		
CLO-3 :	LO-3: Apply the knowledge on basic concepts in operating DC and AC machines				80	Н	-	-	-	Н	-	Н	-	Н	Н	-	-	-		
CLO-4 :	CLO-4 : Analyse the Performance Characteristics of DC and AC and Special machines			85	85	Н	-	-	Н	Н	-	-	-	Н	Н	-	-	-		
CLO-5 :	CLO-5: Apply the knowledge in selecting components for particular application			85	85	Н	-	-	-	-	-	Н	-	Н	Н	-	-	-		
CLO-6 :	CLO-6: Apply characteristics of semiconductor devices, amplifiers, multivibrator and operational amplifiers and electrical drives				80	Н	-	-	-	-	-	-	-	Н	Н	-	-	-		

Dura	tion (hour)	12	12	12	12	12
S 1-4	SLO-1 SLO-2	Characteristics of PN and Zener diode	Rectifiers without filter: Half wave, full wave and bridge	Load Test on DC Shunt Motor	Load Test on Single Phase Transformer	Speed Control of Stepper Motor
S 5-8	SLO-1 SLO-2	I naracteristics of transistor' R II IIII	Rectifiers with filter: Half wave, full wave and bridge	Load Test on DC Series Motor	Load Test on Single Phase Induction Motor	Characteristics of servo Motor
S 9-12			Op Amp: Non-inverting, inverting and buffer amplifier	Speed Control of DC Shunt Motor	Load Test on Three Phase Induction Motor	Interpretation of technical data sheet

Learning Resources	1. Electronics laboratory manual	2. Electrical laboratory manual
-----------------------	----------------------------------	---------------------------------

.

Learning Asse	essment										
	Dia ami'a		Final Examination (50% weightage)								
	Bloom's	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	4 (10%)#		ii (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	-	40 %	-	30 %	-	30 %	-	30 %	-	30%
Level 2	Apply Analyze	-	40 %	-	40 %	-	40 %	-	40 %	-	40%
Level 3	Evaluate Create	-	20 %	-	30 %	-	30 %	-	30 %	-	30%
	Total	10	0 %	10	0 %	10	0 %	10	0 %	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. N. Gunavardhini, TANGEDCO, Salem, gunatneb1990@gmail.com	1. Dr.S. S Dash, Government College of Engineering Kednhhar, Orisha, munu_dash_2k@yahoo.com	1. Dr. M. Santhosh Rani, SRMIST
2. Dr. S. Janardhanam, CAPGEMINI	2. Dr. K. Sujatha, Dr. MGR Educational and Research Institute, drksujatha23@gmail.com	2. Dr. T. Muthuramalingam, SRMIST

Course Code	18MHC105J	Course Name	FLUID POWER SYSTEM AND AUTOMATION		Course ategory	,	С	Professional Core						L 3	T 0	P 2	C 4					
Pre-requi Course	INII		Co-requisite Courses			gres: ourse		Nil														
Course Off	ering Department	Mechatr	ronics Engineering Data Book / Codes	/Standards	Nil																	
Course Lea	rning Rationale (CL	R): The purp	oose of learning this course is to:		L	earni	ng				l	Progra	am Le	earnir	ng O	utcon	nes (	PLO)				
			id power, working of pneumatic and electro-pneumatic system cor		1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-3 : [] CLR-4 : [] CLR-5 : []	Design, develop fluid p Itilize working principl Itilize programmable l	oower circuits f le of various hy logic controller	ic and electro-pneumatic components; design and develop fluid po for various applications, utilize working of hydraulic systems compo draulics application circuits. s and PLC programming for fluid power system control. ts and design and control fluid power circuits for automation applic	onents	of Thinking (Bloom)	ed Proficiency (%)	ed Attainment (%)	Enclineering Knowledge	Problem Analysis	& Development	s, Design, Research	Tool Usage	۲& Culture	Environment & Sustainability		ual & Team Work	Communication	Mgt & Finance	ng Learning	1	2	3
Course Lea	rning Outcomes (CL	O): At the e	nd of this course, learners will be able to:		Level o	Expected F	Expected	Encine	Probler	Design	Analysis, I	Modern	Society	Environ	Ethics	Individual	Comm	Project	Life Long	PSO- `	PSO-2	PSO-3
CLO-1 : F	Recognize the use of t	fluid power sys	tems, and identify various pneumatic and electro-pneumatic comp	onents	2	80	75	Н	L	L	L	М	L	-	-	-	-	-	L	L	М	L
			ro-pneumatic components and design fluid power circuit for a giver		3					М	М	М	М									
CLO-3: Design fluid power circuit for a given application and understand the working of various hydraulic components.				onents.	3	75	70	Н		Н	Н	М	L	L	-	М	-	М	М	Μ	М	М
					3	75	70	Н		М	M	М	L	L	-	-	-	М	L	L	М	М
			PLC for fluid power systems.		3	75	70	H		M	M	M	L	-	-	M	-	М	M	M	М	Н
CLU-6: L	CLO-6: Design, develop and control fluid power systems for various applications.					75	70	H	Н	М	М	М	L	L	-	М	-	М	М	М	М	М

		Introduction to Pneumatics and Electro- pneumatics	Pneumatics and Electro-Pneumatics Components, Design of Circuits	Design of Circuits Intoductions to Hydraulics	Hydraulics and Electrohydraulic components and circuits	Programmable Logic Controllers
Durati	on (hour)	15	15	15	15	15
S-1	SLO-1	Introduction to Fluid Power System, Physics of Fluid Power System	Flow Control Valves and their functions	Cascading Electro-Pneumatic Circuit - Two Groups in Two Cylinder Sequential Control	Synchronization Circuits	Introduction to Programmable Logic Controllers (PLC)
5-1	SLO-2	Advantages, Applications, Comparison of Pneumatic and Hydraulic Systems	Simple and Pressure Compensated Flow Control Valve	Cascading Electro-Pneumatic Circuit - Two Groups, Three-Cylinder Sequential-Control	Conditions for Synchronization	Advantages and Applications of PLC
S-2	SLO-1		Non – Return Valves: Check Valve, Pilot Operated Check Valve	Cascading Pneumatic Circuit: Three Groups, Three-Cylinder Sequential Control	Hydraulic Accessories- Filters, Seals	Parts of PLC
	SLO-2	Reciprocating Compressors -Construction and Principle of Operation	Speed Control Circuits	Cascading Pneumatic Circuit: Three Groups, Three-Cylinder Sequential Control	Simple Pressure Relief Valve and Compound Pressure Relief Valve	Operation of PLC, Architecture of PLC
6.2	SLO-1	Air Treatment, Air Dryer	Logical Valves – Dual Pressure Valve, Shuttle Valve	Cascading Electro-Pneumatic Circuit - Three Groups, Three Cylinder Sequential Control	Sequence valve with application circuit	Introduction to PLC Programming Techniques
S-3	SLO-2	FRL – Filter, Regulator and Lubricator	Pnuematic circuits using logical valves	Cascading Electro-Pneumatic Circuit - Three Groups, Three Cylinder Sequential Control	Pressure reducing valve with applicaton circuit	Introduction to ladder logic programming
s	SLO-1	Lab 1: Introduction to Symbolic		Lab 7: Pneumatic, Electro-pneumatic	Lab 10: Timer and Counter Based Electro-	Lab 13: Introduction to PLC and Ladder
4-5	SLO-2	Representation of Pneumatic Components	Lab 4: Speed Control Circuits	Implementation of Two Cylinder Cascading Circuit		Logic Programming Software
	SLO-1	Pneumatic Actuators, Linear, Rotary and Semi Rotary Type	Quick Exhaust Valve, Time Delay Valve	Timer Based Control of Pneumatic Cylinder	Pressure unloading and counter balance valve	Ladder Logic Program -Implementation of Logic Gates
2-0	SLO-2	Cushioning in Cylinders	Pneumatic Circuits using Quick Exhaust Valve, Time Delay Valve	Counter Based Control of Pneumatic	Pressure unloading and counter balance application circuit	Ladder Logic Program -Implementation of Start/Stop Operation and Latching

SRM Institute of Science & Technology – Academic Curricula (2018 Regulations) - Control copy

S-7		Special Cylinders	Introduction to Sequential Control	Discussion on Different Pneumatic and Electro-pneumatic Circuit Implementation	Accumulators – Working Principle and Types	Ladder Logic Program – Continuous Reciprocation Circuits
3-1	SLO-2	2/2, 3/2, 5/2, 5/3 Direction Control Valves- Construction and Principle of Operation	Pneumatic Circuit - Two and Three Cylinder Sequential Control	,	Application Circuits of Accumulator	Ladder Logic Program – Sequential Circuit Implementation
S-8	SL0-1		Sequential Control	Introduction to Hvaraulic Components	Proportional Valve – Working Principle and Control	Ladder Logic Program – Sequential Circuit Implementation
0-0	SLU-2	Acting Cylinder	Electro-pneumatic Circuit - Two Cylinder Sequential Control	Fluids for Hydraulic Systems	Force and Torque Proportional Control	Ladder Logic Program – Pneumatic Application
S 9-10			Lab 5: Pneumatic Implementation of Two Cylinder Sequential Control Circuit	Lab 8: Pneumatic Implementation of Three Cylinder Cascading Circuit	Lab 11: Hydraulic Synchronization Circuits	Lab 14: Developing PLC Program for Sequential Control of Pneumatic Cylinder
S-11	SLO-1	Introduction to Electro-pneumatics	Electro-pneumatic Circuit - Three Cylinder Sequential Control	Gear Pumps	Servo Valve – Working Principle and Types	Interlocks in PLC
3-11	SLO-2		Electro-pneumatic Circuit - Three Cylinder Sequential Control	Vane Pumps	Flapper Type, Jet Pipe, Electro Hydraulic Servo Valves	Ladder Logic Program – Interlocking
S-12	SLO-1	Construction and Working Principle of Relays	Circuits with Overlapping Signals		Design, Selection of Components of Hydraulic Press, Hydraulic Machine Tools	Timers in PLC
3-12	SLO-2	Timers and Counters	Steps to Solve Signal Overlapping Problem using Cascading Technique	Pump Performance, Characteristics and Selection	Design and Selection of Components of Articulated Mechanisms	Counters in PLC
S-13	SLO-1	Implementation	Cascading Pneumatic Circuit - Two Groups in Two Cylinder Sequential Control	Direction Control Valves 3/2, 4/2	Fault Diagnostics in Fluid Power Circuits	Ladder Logic Program – Implementation of Timer and Counter Based Applications
5-15	SLO-2	Continuous Reciprocation of Single acting and Double Acting Cylinder – Electro Pneumatic Implementation	Cascading Pneumatic Circuit - Two Groups in Three Cylinder Sequential Control		Safety and Emergency Mandrels in Hydraulic and Pneumatic Systems	Summary of the Course discussion
S 14-15			Lab 6: Electro-pneumatic Implementation of Two Cylinder Sequential Control Circuit		Lab 12: Developing Automation Solution for Industrial Application using Sensors	Lab 15: Model Practical Examination

Learning	Anthony Esposito, Fluid Power with applications, 7 th ed., Prentice Hall, 2014 FESTO, Fundamentals of Pneumatics, Vol I, II, III,	
Resources	Majumdar .S.R., Oil Hydraulics: Principle and Maintenance, Tata McGraw Hill Education, 201	2

- Andrew Parr, Hydraulics and pneumatics, Jaico Publishing House, 2006
   Frank D. Petrezulla, Programmable Logic Controller, 4th ed., McGraw Hill Education, 2011
   Laboratory manual for Fluid Power System and Automation, SRMIST.

Learning Asse	essment													
	Bloom's			Final Examination (50% weightage)										
		CLA –	1 (20%)	0%) CLA – 2 (30%)			3 (30%)	CLA-4	(20%)#	Final Examination (50% weightage)				
	Level of Thinking Theory Practice Theory Practice Theory Practice						Practice	Theory	Practice	Theory	Practice			
r. Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%			
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%			
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%			
	Total         100 %         100 %         100 %								) %	100 %				

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Harish Nachnani, National Sales Manager, Festo India(P) Ltd, harish.nachnani@festo.com	1. Dr. P. Karthikeyan, MIT campus, Anna university, pkarthikeyan@annauniv.edu	1. Mr. Sanjay Kumar Kar, SRMIST
2. Mr.Girish Joshi, Senior Manager, BoschRexroth ltd, joshi.gs@boschrexroth.co.in	2. Dr.B.Mohan, Professor, Anna University, mohanb@mitindia.edu	2. Ms. G. Madhumitha SRMIST

Course 18MHC106T	Course KINEMATICS AND DYNAMIC	Course Category	С	Professional Core	L 3	T 1	P 0	C 4
Pre-requisite Courses Course Offering Department	Co-requisite Courses Mechatronics Engineering	NI	essive Irses	Nil				

Course Learning Rationale (CLR): The p	urse Learning Rationale (CLR): The purpose of learning this course is to:			ng	Program Learning Outcomes (PLO)														
CLR-1: Utilize the concept of machines, r	mechanisms and flywheel	1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14 15
CLR-2: Utilize knowledge on the performa	nance of cams, gyroscope											У							
CLR-3: Impart knowledge on the perform	nance of gears and gear trains	ĉ							earch			pilit							
CLR-4 : Explore the undesirable effects of	f unbalanced force in engines and its remedies	(Bloom)	y (%)	t (%)		dge		ent	S			aina		Work		9			
CLR-5 : Utilize knowledge in vibratory sys		B (B	enc	nen		wle	s	md d	ı, Re	Usage	Ð	Sustainability		м		Financ	ĝ		
CLR-6: Utilize various laws governing rigi	id body motions, vibration characteristics and balancing of mechanical machines	Thinking	Proficiency	Attainment		Knc	alysi	Development	esign,	Us:	Culture	∞ŏ		Team	ion	α Έ	aming		
		Tai.	μP			ing	Analysis	& De		Tool	& CL	nent		Š	licat	Mgt.	Le		
Course Learning Outcomes (CLO): At th	he end of this course, learners will be able to:	Level of	Expected	Expected		Engineering Knowledge	Problem .	Design 8	Analysis,	Modern .	Society 8	Environment	Ethics	Individual	Communication	Project N	Life Long	PSO-1	PSO-2 PSO-3
CLO-1 : Comprehend the concept of mach	hines, mechanisms and flywheel.	1	85	80		Н	L	-	H	М	-	L	L	М	-	-	-	М	
CLO-2 : Analyze the performance of cams	s, gyroscope	2	85	80		Н	Н	-	Н	М	-	L	L	М	-	-	-	-	
CLO-3 : Analyze the performance of gears	rs and gear trains.	2	85	80		Н	Н	-	Н	М	-	L	L	М	-	-	-	-	
CLO-4: Utilize the knowledge of undesirable effects of unbalanced force in engines		2	85	80		Н	Н	-	Н	М	-	L	L	М	-	-	-	-	
CLO-5 : Interpret and solve problems in vi	CLO-5 : Interpret and solve problems in vibratory systems and analyze the effects		85	80		Н	Н	-	Н	М	-	L	L	М	-	-	-	-	
CLO-6 : Implement various laws governing rigid body motions, vibration characteristics and balancing of mechanical machines			85	80		Н	Н	-	Н	М	-	L	L	М	-	-	-	-	

		Basic Elements of Mechanisms	Cams and Gyroscope	Gears and Gear trains	Balancing of masses	Vibrations
Durati	on (hour)	12	12	12	12	12
S-1	SLO-1	Introduction to kinematic links, pairs, chain, machine and structure	Classifications of cam and follower	Fundamentals of toothed gearing	Introduction to balancing of masses	Introduction to Vibration
0-1	SLO-2	Degrees of freedom(DOF)	Classifications of cam and follower	Types of gear	static and dynamic mass balancing	Types of vibration
	SLO-1	Grashoff's law, Kutzback's criterion for planar mechanism	Construction of cam profile when the		Balancing of several masses rotating in	
S-2	SLO-2	Kinematic inversions of four bar mechanism and slider crank mechanism and its kinematic inversions	follower moves with uniform velocity and simple harmonic motion	Gear nomenclature	single plane.	Longitudinal, transverse vibration
S-3	SLO-1	Modelling Simulation of Crank and slotter lever mechanism	Construction of cam profile when the follower moves with uniform acceleration	Law of gearing, forms of teeth	Balancing of several masses rotating in	Dunkerley's method.
3-3	SLO-2	Modelling Simulation of Whitworth quick return mechanism		Length of path of contact	single plane.	Critical speed of shafts
S-4	SLO-1	Practice 1: Problems on DOF of Planar	Practice 4: Problems on construction of cam profile profile when the follower moves	Practice 7: Problems on Length of path of	Practice 10: Problems on Balancing of	Practice 13: Problems on Longitudinal,
5-4	SLO-2	mechanisms, crank and slotted lever mechanism	with uniform velocity and simple harmonic motion	contact	several masses rotating in single plane.	transverse vibrations
S-5	SLO-1	Turning moment diagram of a single	Construction of cam profile when the	Length of arc of contact	Balancing of several masses rotating in	Viscous damping
3-5	SLO-2	cylinder engine	follower moves in cycloidal motion	Contact ratio, interference	different planes.	damping factor
S-6	SLO-1	Turning moment diagram of a multi	Gyroscope: Forces and couples	Gear trains.	Balancing of reciprocating masses.	Torsional vibrations.

SRM Institute of Science & Technology – Academic Curricula (2018 Regulations) - Control copy 263

	SLO-2	cylinder engine		Types of gear trains- simple gear train		
S-7	SLO-1	Fluctuation of energy, coefficient of	Effect of gyroscopic couple in aeroplanes	Compound gear train.		Single and two rotor systems
3-1	SLO-2	fluctuation of energy	Enect of gyroscopic couple in aeroplanes	Reverted gear train.	Balancing of single cylinder engine.	Single and two rotor systems
S-8			Practice 5: Problems on construction of cam profile profile when the follower moves	Practice 8: Problems on simple, compound		Practice 14: Problems on Dunkerley
0-0			in cycloidal motion	and reverted gear trains	single cylinder engine	method and critical speed of shaft
S-9	SLO-1		Stability of a four wheel drive moving in a	epicyclic gear train	Balancing of multi cylinder inline engine.	Three rotor systems.
0.0	SLO-2		curved path			
S-10	SLO-1	Energy stored in flywheel	Gyroscope: stability of two-wheel	Tabular method – epicyclic and reverted	Hammer blow	Torsional vibrations on geared systems
0-10	SLO-2	Lifergy stored in hywrider		gear train	swaying couple	Torsional vibrations on geared systems
S-11	SLO-1	Dimensions of flywheel rim.	Effect of gyroscopic couple in ships	Compound epicyclic gear train.	Tractive force.	Vibration analysis of geared systems.
5-11	SLO-2	Dimensions of hywneer him.	Enect of gyroscopic couple in ships	Compound epicyclic gear train.	Tractive force.	Vibration analysis of geared systems.
S-12	SLO-1	Practice 3: Problems on energy stored in	Practice 6: Problems on effect of gyroscopic couple on aeroplanes and four	Practice 9: Problems on Compound		Practice 15: Problems on two rotor system
5-12	SLO-2	flywheel and flywheel rim dimensions	wheeler and two wheeler	epicyclic gear train.	multi cylinder inline engine.	and three rotor system

Learning Resources	<ol> <li>Ratan.S.S, Theory of Machines, 4th ed., Tata McGraw Hill, 2014</li> <li>R.L. Norton, Kinematics and Dynamics of Machinery, 1st ed., Tata McGraw Hill, 2010</li> <li>Sadhu singh Theory of machines, 3rd ed., Pearson, 2011</li> <li>Gordon R. Pennock &amp; Shigley J.E John J Uicker, 4th ed., Theory of machines and mechanisms, Oxford university press, 2014</li> <li>R.K. Bansal, J.S. Brar, Theory of Machines, 5th ed., Lakshmi publications, 2016</li> </ol>	6. 7. 8. 9. 10. 11.	Singiresu S.Rao, Mechanical Vibrations, Nem Chand and Bros, 1998 Thomas Beven, Theory of Machines, 3 rd ed., CBS Publishers and Distributors, 2013 Sing, V.P, Mechanical Vibrations, Dhanpat Rai and Co., 1998 Rao.J.S., Dukkipati.R.V, Mechanism and Machine Theory, Wiley Eastern Ltd., 2006 John Hannah, Stephens.R.C, Mechanics of Machines, Viva Low Price student edition, 1999 Ghosh .A., Mallick.A.K, Theory of Mechanisms and Machines, Affiliated East - West Pvt. Ltd., 2006
-----------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Learning Asses	ssment												
	Bloom's		Continuous Learning Assessment (50% weightage)										
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#		n (50% weightage)		
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	30 %		30 %		30 %		30 %		30%			
Level I	Understand	30 %	-	30 70	-	30 %	-	30 //	-	30%	-		
Level 2	Apply	40 %		40 %		40 %		40 %		40%			
Leverz	Analyze	40 /0	-	40 /0	-	40 /0	-	40 /0	-	4070	-		
Level 3	Evaluate	30 %		30 %		30 %		30 %		30%			
Levers	Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-		
	Total	100	0%	100	0%	100	0%	100	)%	10	0 %		
" OL A	6 I.I. 11	C 11 A 1	1 0 I T			1001 1 11000	0 110 11 0 0	-					

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. K.Balaguru, Hindhustan Aeronautics Ltd, gurubalao7@gmail.com	1. Dr.S. S Dash, Govt. College of Engineering Kednhhar, Orisha, munu_dash_2k@yahoo.com	1. Mr. J. Thiyagarajan, SRMIST
2. Mr. M. Arun kumar Rolls-Royce India (P) Ltd., arumkumar.manickam@rolls_royce.com	2. Dr. K. Sujatha, Dr. MGR Educational and Research Institute, drksujatha23@gmail.com	2.

Course Code	18MHC107T	Course Name	SYS	STEM DYNAMICS	Course Category	С	Professional Core	L 3	T 0	P 0	C 3
Pre-requisi Courses	NII		Co-requisite Courses	Nil	Progre Cour	· · · · · · · · · · · · · · · · · · ·	Vil				
Course Offer	ring Department	Mechatronics Engine	ering	Data Book / Codes	/Standards Nil						

Course Learning Rationale (CLR): The purpose of learning this course is to:	L	earn	ning Program Learning Outcomes (PLO)																
CLR-1: Classify and manipulate the signals with systems	1	2	3			2 3	4		5	6	7	8	9	10	11	12	13	14	15
CLR-2: Understand the significance of Laplace transform in modeling and solving the LTI systems											У								
CLR-3: Model all possible systems and derive their transfer functions	(mo	(%)					40.2				Sustainability								
CLR-4: Determine the time domain characteristics of system and stability analysis using root locus	loo	× (%	it (%	-	ĥ	1		202			aina		Work		lce				
CLR-5: Obtain the frequency response and determine stability margins for linear systems	g (Blo	ency	Attainment (%)	-		s		- -	age	Ð	Sust		2		Finance	ning			
CLR-6: Impart the knowledge on modeling of systems with analysis and design	Thinking	rofici	tain	2		Analysis		fillinger	S S	Culture	~ð		Team	tion	Š	earni			
	Ц.	dPr		-	2			3	I ool Usage	နှ	neni		8	licat	Mgt.	<u> </u>			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected	-	- Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rilloolii Rill	Problem			Modern	Society &	Environment	Ethics	Individual	Communicatio	Project N	Life Long	PSO - 1	PSO - 2	PSO - 3
CLO-1: Understand and identify the different types of signals and systems	2	80	75	1		1 N	1 L	. 1	И	L	М	М	L	L	М	Н	М	L	М
CLO-2: Importance of Laplace transform in system analysis and design	2	75	75	1	1 I	1 N	1 F		И	L	М	М	L	L	М	Н	М	L	М
CLO-3: Find the transfer function of possible systems using different methods	2	75	75	1	1 I	1 I	I F		И	L	L	М	L	L	М	Н	М	L	М
CLO-4 : Design a system with required specifications	3	70	70	1	1 I	1   F	I I		И	L	М	М	М	L	М	Н	Н	L	М
CLO-5: Analyze a system in frequency domain and determine the margins for stability of system	3	70	70	1		1 F	I F		И	L	М	М	М	L	М	Н	Н	L	М
CLO-6 : Identify, analyze and design of a system for the required specifications	3	75	70	1	I I	1 F	I F		Ν	L	М	М	М	L	М	Н	Н	L	М

		Introduction to Signals and Systems	Linear Time - Invariant Systems	Modeling in S-Domain	Time Domain Analysis and Root Locus	Frequency Response Analysis
Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	Introduction to Signals	Introduction to LTI systems	Transfer functions of simple mechanical systems	First order System and its specifications	Introduction to frequency response
3-1	SLO-2	Representation of signals in continuous and discrete time	Impulse response of LTI systems	Transfer functions of simple mechanical systems	Step, ramp and impulse response analysis of first order systems	Frequency domain specifications
S-2	SLO-1	Elementary/basic Signals	Derivation of Convolution integral formula	Transfer functions of simple electrical networks	Second order system and its specifications	Correlation between time domain and frequency domain specifications
3-2	SLO-2	Relationship among the elementary signals	Properties of convolution integral	Transfer functions of simple electrical networks	Impulse response of second order systems	Construction of Bode plot
S-3	SLO-1	Properties of signals	Properties of LTI system	Analogous systems Mechanical and electrical	Step response of second order systems	Construction of Bode plot
3-3	SLO-2	Properties of signals	Properties of LTI system	Mechanical and Electrical analogous system	Step response of second order systems	Determination of gain and phase margins
S-4	SLO-1	Signal power and energy	Differential equation representation of systems	Transfer function of electromechanical systems	Transient response specifications of under damped systems	Problems on drawing Bode plot and determining the margins for stability
3-4	SLO-2	Problems on properties of signal	Responses of the system in time domain	Transfer function of electromechanical systems	Time domain specifications of the under damped systems	Problems on drawing Bode plot and determining the margins for stability
	SLO-1	Operations on signals	Solving differential equation in time domain	Block diagram representation of system	Steady state error for closed loop system	Determination of transfer functions from Bode Plot
S-5	SLO-2	Manipulations on the dependent and independent variables	Solving differential equation in time domain	Block diagram reduction technique rules	Steady state error for different types and inputs of a system with generalized error coefficients	Determination of transfer functions from Bode Plot
S-6	SLO-1	Representation of Systems	Introduction to Laplace transformation and region of convergence	Problems on Block diagram reduction	Stability of the system with respect to the position of poles in s plane	Introduction and properties of Polar Plots

			standard functions	Problems on Block diagram reduction	criterion	Gain and phase margins in Polar plot
	LO-1	Classification and properties of system	Properties of Laplace transform	Introduction to Signal flow graphs		Problems on drawing Polar plots and determining the margins
<b>S-7</b>	LO-2	Classification and properties of system		Relationship between block diagram and signal flow graph		Problems on drawing Polar plots and determining the margins
SL(	LO-1	Problems on properties of system	Transfer function approach for dynamic system using Laplace transform	Determination of transfer function using	Introduction of Root locus and its properties	Nyquist stability criterion
	LO-2	Problems on properties of system	Poles and zeros of system in 's' plane	Determination of transfer function using	Construction of Roots locus	Assesment of relative stability
-		Properties of system which contains differential equations		Problems on determining the transfer function using Mason's Gain formula	Problems on the construction of Root locus	Problems on Nyquist stability criterion
<b>S-9</b>		Properties of system which contains differential equations		Problems on determining the transfer function using Mason's Gain formula	Problems on the construction of Root locus	Problems on Nyquist stability criterion

 
 Learning Resources
 P Lathi, Principles of Linear Systems and Signals, 2nd ed., Oxford University Press, 2009

 3.
 Alan V Oppenheim., Alan S Willsky, Ian T. Young., Signals and Systems, Prentice Hall, 1983
 J Nagrath, M Gopal, Control Systems Engineering, 5th ed., New Age International, 2007
 Norman S Nise, Control Systems Engineering, 7th ed., Wiley, 2015

Learning Asse	essment												
	Bloom's		Continuous Learning Assessment (50% weightage)										
	Level of Thinking	CLA –	1 (10%)	CLA – 2	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#		n (50% weightage)		
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	30 %		30 %		30 %		30 %		30%			
Level I	Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-		
Level 2	Apply	40 %		40 %		40 %		40 %		40%			
Leverz	Analyze	40 /0	-	40 /0	-	40 /0	-	40 //	-	4076	-		
Level 3	Evaluate	30 %		30 %		30 %	_	30 %		30%			
Level 5	Create	30 %	-	30 /0	-	30 %	-	30 %	-	30%	-		
	Total	100	)%	100	)%	100	0 %	100	0 %	10	0 %		

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. K. Karthikeyan, R&D Specialist, ABB India Ltd, Bangalore, India, sayalkarthik@yahoo.co.in	1. Dr. Dr. B. Chittibabu, IIITDM, Kanchipuram, bcbabu@iiitdm.ac.in	1.Dr. M. Mohamed Rabik, SRMIST
2. Dr. Vishal P Barde, Senior Lead Engineer, Mahindra & Mahindra, Chennai, vishalbarde@gmail.com	2. Dr. P. Karthikeyan, MIT campus, Anna university, pkarthikeyan@annauniv.edu	2Mr. S. Vasanth, SRMIST

Course Code	18MHC108J	Course Name	DI	IGITAL SYSTEM	IS AND MICROPROCESSORS	-	ourse itegory		С				Pro	fessio	nal C	ore					L		P	C
ooue		Name				04	liegory														3	U	2	4
Pre-requis Courses	NII			Co-requisite Courses	Nil			ressi urse		il														
Course Offe	ring Department	Mecha	tronics Engineering	g	Data Book / Codes/Standard	s	Nil																	
Course Lear	ning Rationale (CLF	R): The pu	rpose of learning th	his course is to:			Le	arnin	g					Progr	ram L	earni	ng O	utcon	nes (l	PLO)				
	erceive the fundamen						1	2	3		2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-3 : Kr CLR-4 : Ex CLR-5 : De	now the working princ now the working natu (pose the architecture eal with the Assembly ain knowledge about	re of the seq e and instruc / Language p	uential Devices tion set of different program using typic	t microprocesso cal instruction	8		Thinking (Bloom)	Expected Proficiency (%)	Attainment (%)		Problem Analysis	Jesign & Development	Design, Research	ol Usage	Culture	nt & Sustainability		& Team Work	ation	t & Finance	Learning			
Course Lear	ning Outcomes (CL	.O): At the e	end of this course,	learners will be	able to:		Level of Th	Expected I	Expected			Design & [	Analysis, [	Modern Tool Usage	Society & Culture	Environment &	Ethics	Individual &	Communication	Project Mgt.	Life Long l	PSO - 1	PSO - 2	PSO-3
	nderstand the concep			igital circuits			1	95	90	ŀ		L	L	L	-	-	-	L	-	-	L	М	-	М
	esign the combination						3	90	85	ŀ		М	М	М	-	-	-	М	-	М	Н	М	М	L
	nlighten the architectu						1	85	80	ŀ		-	L	М	-	-	-	-	-	L	М	М	Н	М
	evelop the assembly						3	80	75	ŀ		М	М	М	-	-	-	М	-	L	М	М	Н	М
	se the processors for						2	80	75	ŀ		L	L	Н	-	-	-	М	-	Н	М	Н	Н	Н
CLO-6 : Us	se microprocessor wi	th different p	peripherals				1	90	85	ŀ	1   L	L	L	М	-	-	-	Н	-	Н	М	М	Н	М

		Combinational Circuit Design	Sequential circuit Design	8085 Microprocessor	8086 Microprocessor	Peripheral Interfacing
Durati	on (hour)	15	15	15	15	15
S-1	SLO-1	Introduction to logic gates, Digital logic circuits, Boolean laws and Expression	Introduction to Latches and Flip-Flop,	Introduction to microprocessors	Introduction, Pin Descriptions of 8086 microprocessor	Introduction to Data transfer Schemes
3-1	SLO-2	Minterm, Maxterm, Sum of Products (SOP) and Product of Sums (POS)	Triggering of flip flops	Pin Descriptions of 8085 microprocessor	Modes of operation : Maximum and Minimum mode	Software interrupt
S-2	SLO-1	Boolean Laws and theorems	Truth Table, Characteristic Table,	Architecture of 8085 microprocessor	Architecture of 8086 microprocessor	Pin Description of programmable interrupt controller-8259
5-2	SLO-2	Minimization of Boolean expressions using Boolean Laws and theorems	Excitation table and equations for flip flops			Architecture of Programmable Interrupt Controller-8259
S-3	SLO-1	Minimization of Boolean expressions using	Conversion of SR flip flop to any flip flop	Instruction set of 8085 microprocessor:Types	Instruction set of 8086 microprocessor	Pin Description of Programmable Peripheral Interface-8255
3-3	SLO-2	K - map	Conversion of JK flip flop to any flip flop	Data Transfer Instruction Set	Data Transfer Instruction Set	Architecture of Programmable Peripheral Interface-8255
S 4-5		Lab 1: Verification of logic gates and implementation of Boolean expression	Lab 4: Implementation of Code converters	Lab 7: Implementation of Shift registers	Lab 10: Code conversion using 8085 microprocessor	Lab 13: Sorting of an array using 8086 microprocessor
S-6	SLO-1	Minimization of Boolean expressions using	Conversion of D flip flop to any flip flop	Arithmetic Instruction set	Arithmetic Instruction set	Pin Description of programmable Communication Interface (USART)-8251
3-0	SLO-2	karnaugh map with don't care conditions	Conversion of T flip flop to any flip flop	Logical Instruction Set	Logical Instruction Set	Architecture of programmable Communication Interface (USART)-8251
S-7	SLO-1	Design steps for combinational circuits.	Master – Slave Flip-flop	Branching Instruction Set		Pin Description of Direct Memory Access- 8257
3-1		Design of adder and subtractor.	Steps to design Sequential Circuits		Branching/Program Control Instruction Set	Architecture of Direct Memory Access- 8257

6.0	SLO-1	Design of Multiplexer	Design of synchronous counter Control Instruction set			Pin Description of programmable Interval timer -8253
S-8	SLO-2	Design of De-Multiplexer	Design of synchronous counter	Control Instruction set	Processor Control Instruction set	Architecture of programmable Interval timer -8253
S 9-10	SLO-1 SLO-2	Lab 2: Implementation of Adder Subtractor, Multiplexer, Demultiplexer	Lab 5: Implementation of Flip flops	Lab 8: Study of microprocessor	Lab 11: Multiplication and division using 8086 microprocessor	Lab 14: Generation of waveforms by interfacing with 8085 microporcessor
S-11	SLO-1	Design of Encoder	Design of asynchronous sequential circuits	Addressing modes of 8085 microprocessors: Direct and indirect addressing mode	Addressing modes of 8086 microprocessors: Register and Immediate data – Group I	Applications: stepper motor control using
3-11	SLO-2	Design of Decoder	6 , 1	Register addressing mode register indirect addressing mode and implied addressing mode	Addressing mode for memory data – Group II	8085 microprocessor
S-12	SLO-1	Logic Diagram of Parallel binary	Design of Asynchronous Up, Down counter	Timing Diagram of 8085 microprocessor	Addressing mode for I/O – Group III	A/D and D/ A conversion using 8086
5-12	SLO-2	adder/Subtractor	Design of Asynchronous Up/ Down counter		Interrupts of 8086 microprocessor	microprocessor
C 42	SLO-1	Design of code converters	Concept and Types of Shift Registers(Serial In Serial Out, Serial In	Simple Assembly language programs	Timing Diagram of 8086 microprocessor	A/D and D/ A conversion using 8085
S-13	SLO-2	Design of magnitude comparator	Parallel Out, Parallel In Serial Out and Parallel In Parallel Out shift registers	using the instructions of 8085 microprocessor		microprocessor
S 14-15	SLO-1 SLO-2	Lab 3: Implementation of encoder and decoder	Lab 6: Design of synchronous counter	Lab 9: Arithmetic operations using 8085 microprocessor	Lab 12: Stepper motor Interfacing using 8085 Microprocessor	Lab 15: Model Practical Examination

		M. Morris Mano, Michael D Ciletti, Digital Design, 5th ed., Pearson, 2014	4.	Mohammed Rafiquzzaman, Microprocessors and Microcomputer based System Design, Universal Book
Learning	2.	Charles H.Roth, Fundamentals of Logic Design, 6th ed., Thomson Learning, 2013		Stall, New Delhi, 1990
Resources	З.	Ramesh S. Gaonkar, Microprocessor Architecture. Programming and Applications with the 8085, 5th	5.	Doughlas V.Hall, Microprocessors and Interfacing, Programming and Hardware, Tata McGraw Hill, 2012
		ed., Penram International Publishing (India) Private Limited. 2005	6.	Laboratory manual for Digital Systems and Microprocessors, SRMIST

Learning Assess	sment														
	Bloom's				Final Examination	n (50% weightage)									
	Level of Thinking	CLA – 1 (10%) CLA – 2 (15%) CLA – 3 (15%) CLA – 4 (10%)#									i (50% weightage)				
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice				
r. Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%				
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%				
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%				
	Total	100	0 %	10	0 %	100	) %	100	)%	100 %					

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. K. Karthikeyan, R&D Specialist, ABB India Ltd, Bangalore, India, sayalkarthik@yahoo.co.in	1. Dr. Dr. B. Chittibabu, IIITDM, Kanchipuram, bcbabu@iiitdm.ac.in	1.Dr. M. Mohamed Rabik, SRMIST
2. Dr. Vishal P Barde, Senior Lead Engineer, Mahindra & Mahindra, Chennai, vishalbarde@gmail.com	2. Dr. P. Karthikeyan, MIT campus, Anna university, pkarthikeyan@annauniv.edu	2Mr. S. Vasanth, SRMIST



Course Code	18NTC101T	Course Name	NANOSC	CALE CHEMISTRY	Course Category	С	Professional Core	L 3	T 0	P 0	C 3
Pre-requis Courses	NII		Co-requisite Courses	lil	Progre Cour	Nil					
Course Offe	ring Department	Nanotechnology		Data Book / Codes/S	standards Nil						

Course Lo	earning Rationale (CLR):	The purpose of learning this course is to:		earni	ing Program Learning Outcomes (PLO)																
CLR-1 :	Understand the role of cher	nistry in nanoparticle synthesis	1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2 :	Improve their ability in unde	rstanding the thermodynamic behavior of nanomaterials											у								
CLR-3 :	Acquire knowledge about s	ize effects and reaction kinetics and phase properties at nanoscale	Ê		-					arch			Sustainability								
CLR-4 :	Enhance knowledge about	Symmetry and lattice parameters	(Bloom)	y (%)	it (%		dge		ent	se			aine		Work		g				
CLR-5 :	Enhance knowledge about	the various nanosynthesis techniques	8	enc	nen		wle	s	mdo	ı, Re	Usage	Ð	Sust		2		Finance	ning			
CLR-6 :	Utilize the knowledge of pr	ocessing in nanochemistry	Thinkina	Proficiency	Attainment (%)		Knowledge	Analysis	Development	Design,	S	Culture	~ŏ		Team	io	∞ŏ	arni			
			Ц.	dPr			ring	Ana	& De	, De	Tool	ھ ت	neni		al &	licat	Mgt.	g Le			
Course Lo	earning Outcomes (CLO):	At the end of this course, learners will be able to:	Level of	Expected	Expected		Engineering	Problem	Design 8	Analysis,	Modern .	Society &	Environment	Ethics	Individual	Communicatior	Project N	Life Long	PSO - 1	PSO - 2	PSO - 3
CLO-1 :	Identify the difference betw	een bulk and nanoscale thermodynamics	2	80	75	1	М	М	Н	H	М	М	Н	Н	Н	Н	М	Н	Н	Н	Н
CLO-2 :	Identify symmetry, point gro	oups and its application in lattice determination	2	80	70	] [	Н	Н	Н	Н	М	М	М	Н	Н	Н	М	Н	М	М	М
CLO-3 :	Describe phase diagram ar	d transition in nanoscale	2	75	70	1	Н	М	Н	М	Н	Н	Н	Н	М	М	Н	Н	Н	Н	Н
CLO-4 :	Analyze the physical chemi	stry of nanomaterials	2	80	75		М	Н	М	Н	М	Н	Н	Н	М	Н	М	М	Н	Н	Н
CLO-5 :							Н	М	Н	Н	Н	М	Н	Н	Н	Н	М	Н	Н	Н	Н
CLO-6 :	Analyze the chemistry base	d processes at nanoscale	2	80	70		Н	М	Н	Н	Н	М	Н	Н	Н	Н	М	Н	Н	Н	Н

Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	Fundamental Properties of nanomaterials	Symmetry of molecules	Crystalline phase transitions in nanocrystals	Supercritical fluids-introduction	Introduction on different synthesis route of nanoparticles
3-1		Size effects on structure and morphology of free and supported nanoparticles	point groups of molecules	Phase transitions and grain size dependence	Processes involving supercritical fluids	Overview on precipitative methods
S-2		Size and confinement effects of nanomaterials	Symmetry of nanosystems	Phase diagram of Water and Carbondioxide	Phase diagram of a pure substance	Chemical precipitation and co-precipitation methods to synthesize nanomaterials
<b>J-</b> 2	SLO-2	Fraction of surface atoms	Point groups of nanoclusters	Different forms of phase transition	Pressure–density diagram for CO2	Chemical reduction method to synthesize metallic nanocrystals
S-3		Specific surface energy and surface stress of nanomaterials	Miller indices and representation of directions	Classification of phase transitions	Physicochemical properties: solubility or dissolving power of different fluids	Metathesis to prepare nanoparticles
0-0	SLO-2	Effect of size on the lattice parameter	Bragg's law of diffraction	Tools to detect phase transition	Variation of viscosity with respect to presure	Steps involved in Sol-gel synthesis
S-4	SLO-1	Classification of nano-structured materials	XRD analysis of bulk and nanomaterials	Wulff anf Wulff-Kirchoff plot for equilibrium geometry	Transport properties of supercritical fluids	Reaction mechanisms: Hydrolysis and polycondensation
3-4	SLO-2	0D, 1D, 2D,3D structures	Identification of crystal planes in bulk and nanomaterials	Phase transition of Barium Titanate nanoparticles as example	Diffusion and Brownian motion	Introduction to micelles, reverse micelles and microemulsions
S-5	SLO-1	Introduction to thermodynamics of bulk materials	Scherer equation to calculate the grain or crystallite size	Influence of the surface or interface on nanocrystals	Thermal conductivity or heat transport phenomenon of supercritical fluids	Synthesis of nanomaterials using microemulsion route
3-3	SLO-2	Gibb's equation	Specific features of nanoscale growth	Modification of transition barrier, geometric Purification and extraction of supercri evolution of the lattice in nanocrystals fluids		Prepare inorganic nanomaterials using hydrothermal and solvothermal routes
S-6	SL0-1	Derivation of free energies of nanostructures with different geometry	Size control of nanoparticles	Influence of the nanocrystal surface or interface on the lattice parameter	Synthesis of supercritical fluids	Preparation of arrays of oxide nanocrystals using thermolysisroute
3-0		Surface energy and work function of nanostructures with different geometry	Triggering the phase transition in small particles fabrication	Crystallization of metallic glasses	Cryochemistry of metals-Introduction	Microwave heating assisted synthesis of nanomaterials
S-7	SLO-1	Thermodynamics of nanospheres	Application to solid nanoparticles	Grain growth and grain growth kinetics	Silver and other metals	Introduction to sonochemistry

	SLO-2	I hermodynamics of nanorods	Controlling nucleation in nanomaterial synthesis	High pressure phase stabilization and DSC studies of nanomaterials	Stabilization of nanoparticles by polymers	
S-8	SLO-1	Thermodynamics of nanoclusters	Controlling growth in nanomterial synthesis	TGA studies of nanomaterials	Stabilization of nanoparticles by mesogenes	Synthesis of nanosized hydroxides using sonochemical method
3-0	SLO-2	Kinetic versus thermodynamic stability	Controlling aggregation of nanoparticles	Solid solutions	Reactions of rare-earth elements activity, selectivity and size effect	Core-shell synthesis of semiconductor nanocrystals
S-9	SL0-1	nanoscale	Stability of colloidal dispersions	Congruence in solid solutions	Reactions at superlow temperatures	Electrochemical synthesis of nanoparticles
3-9	SLO-2	Factors affecting thermodynamics at nanoscale	Breaking mailer into dieces	Phase change and applications of nanosystems	Reactions of silver particles of various sizes and shapes	Photochemical synthesis of nanoparticles
Learn Reso	•	1. Ben Rogers, Jesse Adams, SumithaP CRC press, 2017	son, Foundations for Nanoscience and Nano	technology, CRC press, 2017		

Learning Asse	essment										
	Bloom's				Einal Examinatio	n (50% weightage)					
	Level of Thinking	CLA –	1 (10%)	CLA –	CLA – 2 (15%)		3 (15%)	CLA-4	(10%)#		ii (50% weigiilage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	30 %		30 %		30 %		30 %		30%	
Level I	Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply	40 %		40 %		40 %		40 %	-	40%	
Level 2	Analyze	40 /0	-	40 /0	-	40 /0	-	40 %	-	4070	-
Level 3	Evaluate	30 %		30 %		30 %		30 %		30%	
Level 5	Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	100	0 %	10	0%	10	0 %	10	0%	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. P. Sudhakara, CLRI – CSIR, Jalandhar, sudhakarp@clri.res.in	1. Dr. Kothandaraman Ramanujam, IITM Chennai, rkraman@iitm.ac.in	1. Dr. N.Angeline Little Flower, SRMIST
2. Dr. Nagesh Kini, Thermax, Pune, Maharastra, nagesh.kini@gmail.com	2. Prof. G. Ranga Rao, Department of Chemistry, IITM Chennai, grrao@iitm.ac.in	2. Dr. S. HariniPriya, SRMIST

Course Code	18NTC102T	Course Name	QUANTUM MECHANICS FC	R NANOTECHNOLOGISTS	Course Category	(	0				Profe	essio	nal Co	ore				_	L 3	T 0	P 0	C 3
Pre-requis Courses	s ^{INII}		Co-requisite Courses			essiv Irses	'e	Nil														
Course Offe	ring Department	Nanote	echnology	Data Book / Codes/Standards	Nil																	
Course Lear	rning Rationale (CL	R): The pu	rpose of learning this course is to:		Lea	irning	J				F	Progr	am L	earni	ing O	utcon	nes (l	PLO)				
CLR-1 : U	tilize the concept of o	old and new C	Quantum Mechanics		1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	nalyze the bound and													ty								
			lications - Nanodimension		Ê	(%)	(%)	0			arch			Sustainability		×						
			ng various assumptions		(Bloom)			gg		elopment	ese			ain		Work		inance				
CLR-5 : Id	lentify the implication	s of quantum	theory and approximations at nanoscale		B (B	ency	mer	N N	s	mdo	Å.	Usage	ø	Sust		E E		inar	b			
CLR-6 : U	tilize the basis of qua	antum mecha	nics and get acquainted with its applicatio	ns	Thinking	ofici	Attainment	Knowledge	Analysis	sveld	Design,	۱Us	Culture	8		Team	tion	8 F	ami			
					Thir	Ъ		ning	Ani	& Dev	Ĕ	Tool	S S	nen		al &	ica	Mgt.	g Le			
Course Lea	rning Outcomes (Cl	LO): At the	end of this course, learners will be able to	:	Level of	Expected	Expected	Engineering	Problem.	Design {	Analysis,	Modern	Society	Environment	Ethics	Individual	Communication	Project I	Life Long	PS0-1	PSO-2	PSO - 3
CLO-1 : E	xplain the basics of C	Quantum Mec	hanics		2	80	75	М	М	Н	М	М	М	М	Н	Н	Н	М	Н	Н	Н	М
CLO-2 : A	pply Quantum Mecha	anics in low-d	limensional systems		2	80	70	Н	М	Н	Н	М	М	М	Н	М	Н	М	Н	М	М	М
CLO-3 : Po	erform approximatior	n methods to	solve problems in nanoscale		2	75	70	М	М	Н	М	Н	Н	Н	Н	Н	Н	Н	М	Н	Н	Н
CLO-4 : G	ain expertise in proc	esses based	on quantum phenomena				75	М	Н	Н	Н	М	Н	Н	Н	М	Н	М	Н	Н	Н	Н
	1 11 1	1	1 .		0	00	70															11

2 80 70

2 80 70

H M M M H M M H H H H H H H H

M H M H H M M H H H M H H H H

CLO-2: Apply Quantum Mechanics in low-dimensional systems CLO-3: Perform approximation methods to solve problems in nanoscale CLO-4: Gain expertise in processes based on quantum phenomena CLO-5: Solve problems using quantum mechanics

**CLO-6** : Analyze the basis of guantum mechanics and get acquainted with its applications

Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	Old quantum mechanics, wave particle duality	Classical interpretation of scattering state	Energy eigen functions and eigen values with precession coordinates	Principle of variational method	Two particle system's Schrödinger equation
3-1	SLO-2	Heisenberg uncertainty principle	Quantum interpretation of scattering State	Infinite well potential in one dimensions	Proof of variational method and implementation	Derivation of two particle system's Schrödinger equation
	SI 0-1	Generalized Heisenberg uncertainty principle	Reflection of particles (wavefunction)	Numericals on infinite well potential in one and three dimensions	Energy eigen value in case of time independent perturbation theory for non- degenerate energy levels	Transformation to center of mass frame from laboratory frame
S-2	SLO-2	Ehrenfest theorem	Transmission of Particles (wavefunction)	Quantum confinement effect in nanoscale	Energy eigen value in case of time independent perturbation theory for non- degenerate energy levels (quantitative approach)	Exchange operator
S-3	SLO-1	Linear vector space	Rectangular potential barrier (E <v₀): quantitative</v₀): 	Finite Well Potential, Delta potential	Eigen function in case of time independent perturbation theory for non-degenerate energy levels	Symmetrization of wave function
3-3	SLO-2	Hilbert space	Rectangular potential barrier (E>V₀)	Eigen values, Schrödinger equation in spherical coordinates	Eigen function in case of time independent perturbation theory for non-degenerate energy levels(quantitative approach)	Antisymmetric wave function
	SLO-1	Statistical interpretation, stationary states	Transmission probability plot as a function of energy ofparticle	Angular equation	Energy eigen value in case of Time independent perturbation theory for degenerate energy levels	Bosons and Fermions
S-4	SLO-2	Orthogonal wave function	Numericals in rectangular potential barrier	Introduction on radial equation	Quantitative approach of energy eigen value in case of Time independent perturbation theory for degenerate energy levels	Exchange forces

	SLO-1	Normalization of wave function	Tunneling effect	Derivation of radial equation	Eigen function in case of time dependent perturbation theory for two-level systems	Solids, free electron gas
S-5	SLO-2	Hermitian operator	Relation of tunneling with nanotechnology	Infinite spherical well	Quantitative approach of eigen Function in case of Time dependent perturbation theory for two-level systems	Band structure of solids
• •	SLO-1	Properties of Hermitian operator	Alpha-particle emission	Numerical on infinite spherical well	Sinusoidal perturbations	Quantum scattering theory
S-6	SLO-2	Commutation	Failure of Classical Mechanics to explain Alpha-particle emission	Ground state properties of hydrogen atom	Sinusoidal perturbations (quantitative approach)	Quantum scattering theory (quantitative approach)
	SLO-1	Energy eigen value equation	Derivation on Alpha-particle emission	Angular momentum (L _x ,L _y ,L _z )	Incoherent perturbation	Differential and total cross sections
S-7	SLO-2	Boundary condition of wavefunction	Numericals in particle emission	Angular momentum (L _x ,L _y ,L _z ) in spherical coordinate	Role of incoherent perturbation	Differential and total cross sections (quantitative approach)
S-8	SLO-1	Schrödinger's time dependent wave equations	Resonant tunneling	Generalized angular momentum (J _x ,J _y ,J _z ), Eigen values	Transition rate	Green's functions
3-0	SLO-2	Schrödinger's time independent wave equations	Applications of resonant tunneling	Eigen values of momentum operator	Transition rate role is perturbation	Born approximation
• •	SLO-1	Schrödinger's representation	Negative differential resistance	Spin ½, spin for two particle system	Adiabatic approximations (elementary concepts)	Applications in nanotechnology
S-9	510-7	Heisenberg representation, interaction picture	Negative differential resistance in 2D materials	Role of spin in nanospintronics	Sudden approximations (elementary concepts)	Overall role and implication of quantum phenomena in nanotechnology
Learn Resou	•	G. Aruldhas, Quantum Mechanics, 2 ⁿ David J. Griffiths, Introduction to Qua	^d ed., PHI, 2013 ntum Mechanics, 2 nd ed., Pearson, 2009		S. Lokanathan, Quantum Mechanics, 5 th ed., I., JoachainC.J. Quantum Mechanics, 2 nd ed	

Learning Asse	essment										
	Bloom's			Cont	nuous Learning Ass	essment (50% weig	htage)			Einal Examination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA – 2 (15%)		CLA –	3 (15%)	CLA – 4	(10%)#		i (50% weigi itage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	100	0 %	10	0%	10	0 %	10	0%	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Noriaki Terakubo, JGC CORPORATION, Japan, terakubo.noriaki@jgc.co.jp	1. Dr. Uday Narayan Maiti, IITG Guwahati, udaymaiti@gmail.com	1. Dr. Ranjit Thapa, SRMIST
2. Mr. R. Seshadri, TITAN Company Limited, seshadri@titan.co.in	<ol> <li>Dr. Noejung Park, Ulsan National Institute of Science and Technology, noejung@unist.ac.kr</li> </ol>	2. Dr. Kiran Mangalampalli, SRMIST

Course Code	18NTC10	3L	Course Name	NANOS	ALE MA	TERIALS LABORATORY		urse egory		C				Prof	fessio	nal C	ore					L 0	T 0	P 2	C 1
Pre-req Cours				Co-requi Course				Prog Co	ressiv urses		I														
Course O	ffering Departn	ent	Nanotechnolog	<i>y</i>		Data Book / Codes/Standards	Ι	Nil																	
Course L	earning Rationa	le (CLF	R): The purpose of	learning this course	is to:			Lea	arninę	ł					Prog	ram L	.earn	ing O	utcor	nes (F	PLO)				
CLR-1 :	Analyze the che	emical p	roperties of nanostru	ictured materials ba	ed on th	neir size		1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Demonstrate va Utilize the char Analyze the opt	rious sy acterizat ical and	view the morphology vnthesis methods for tion techniques and o magnetic properties thesis and chemica	r nanomaterials pre calculate the size an of the nanomateria	aration I bandga	absorbance of the nanomaterial		Thinking (Bloom)	d Proficiency (%)	d Attainment (%)	Enaineerina Knowledae	Analysis	& Development	, Design, Research	Tool Usage	& Culture	nent & Sustainability		Individual & Team Work	lication	dgt. & Finance	g Leaming			
Course L	earning Outcon	es (CL	<b>O):</b> At the end of th	iis course, learners	vill be abl	le to:		Level of	Expected	Expected	Enginee	Problem.	Design {	Analysis,	Modern	Society	Environment	Ethics	Individua	Communication	Project Mgt.	Life Long	PS0-1	PSO-2	PSO-3
CLO-1 :	Perform various	experii	mental methods for n	anoparticles synthe	sis			2	80	75	M	M	Ħ	Ĥ	M	M	M	Ħ	Ħ	Ĥ	M	Ħ	Ħ		M
			mistry innanoparticle				-	2		70	М	Н	Н	Н	М	М	М	Н	М	Н	М	Н	М	М	М
CLO-3 :			ata in determining th		rials			2		70	Н	М	Н	Н	Н	Н	М	Н	Н	Н	Н	Н	Н		Н
CLO-4 :			of nanomaterials bas					2		75	М	М	Н	Н	М	М	Н	Н	Н	Н	М	Н	Н		М
			of different chemica					2		70	Н	М	Н	Н	Н	М	Н	Н	Н	Н	М	Н	Н		Н
CLO-6 :	Perform various	charac	terizations of nanom	aterials				2	80	75	H	H	Н	Н	Н	М	М	Н	Н	Н	М	Н	Н	Н	Н

Durati	on (hour)	6	6	6	6	6
	SLO-1		Synthesis of gold nanoparticles by			Synthesis of iron oxide nanoparticles using precipitation method
S 1-2	SLO-2		Determination of absorption coefficient using UV-Vis spectrometer	Synthesis of photocatalytic solution using co-precipitation method	nanoparticles anddetermination of particle size using UV-Vis spectrometer	Scherrer formula to determine the crystallite size of nanoparticle using X-ray diffraction technique
S 3-4	310-1	Synthesis of zinc sulfide quantum dot using co-precipitation method Determination of optical bandgap using	precipitation	Synthesis of nanoparticles loaded polymer		Determination of pH of unknown solution
		UV-Vis spectrometer	dispersion at different pH conditions	fibers using electrospinning technique	identification using XRF analysis	
s	SLO-1	Synthesis of silica nanospheres using	Synthesis of metal oxide nanoparticles		Fabrication of polymer membrane using phase inversion technique and	Thin film preparation by spin coating technique and to determinethe dislocation
		stober's method	using sol-gel technique	Repeat/revision of experiments	characterization using scanning electron	density and strain of given sample by XRD method

Learning Resources	<ol> <li>Nanoscale chemistry laboratory course manual, 2016</li> <li>Kenneth J. Klabunde, Nanoscale Materials in Chemistry, WileyInterscience publications, 2001</li> <li>Vincenzo Turco Liveri, Controlled Synthesis of Nanoparticles in Microheterogeneous Systems, Springer, 200</li> </ol>	<ol> <li>L.H. Sperling, Introduction to Physical Polymer Science, Wiley Inter science, 2006</li> <li>http://chemistry.beloit.edu/classes/Chem150/index.html</li> </ol>
-----------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Learning Asse	essment										
	Dia ami'a			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examination	n (EOV) weightege)
	Bloom's	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	4 (10%)#		n (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	-	40 %	-	30 %	-	30 %	-	30 %	-	30%
Level 2	Apply Analyze	-	40 %	-	40 %	-	40 %	-	40 %	-	40%
Level 3	Evaluate Create	-	20 %	-	30 %	-	30 %	-	30 %	-	30%
	Total	10	0 %	10	0 %	10	0 %	10	0 %	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. P. Sudhakara, CLRI – CSIR, Jalandhar, sudhakarp@clri.res.in	1. Dr. Kothandaraman Ramanujam, IITM Chennai, rkraman@iitm.ac.in	1. Dr. N.Angeline Little Flower, SRMIST
2. Dr. Sudhakar selvakumar, CSIR-Central Electrochemical Research Institute, ssudhakar79@gmail.com	2. Dr. Arthanreeswaran, NIT, Trichy,arthanareeg@nitt.edu	2. Dr. S. HariniPriya, SRMIST

Course Code	18NTC104T	Course Name	THERMODYNAMICS AND STATE	STICAL MECHANICS	Cours Catego		С				Pro	ofessio	nal C	ore				_	L 3	Т 0	P 0	C 3
Pre-requ Cours Course O		Nanote	Co-requisite Nil Courses	Data Book / Codes/Standards	P	rogres Cours		Nil														
	earning Rationale (CLI		pose of learning this course is to:			Learr	ning	] [				Progr	ram L	.earni	ing O	utcon	nes (F	PLO)				
	Utilize the basic princip					1 2	3		1 2	3	4	5	6	7	8	9	10	11	12	13	14	15
			ies of pure substances and different kinds of eq	uilibrium							-			₹								
	Utilize the concept of e					Ê S	(%)		m		Design, Research			Sustainability		×						
	Analyze the concepts of					ninking (Bloom) Proficiency (%)	u ()		6pe	Jent	ese			tain		Work		Finance				
	Analyze the principles					ien (F	ne E		Š.	e do	Ľ Ľ	age	e	Sus		Team		ina	ing			
CLR-6 :	Apply the concepts of I	Non-equilibriu	im thermodynamics to Nanoscale systems			d Proficiel	Attainment	:	L L	evel	esig	۱ ۱	ultu	nt &		Це	ation	∞ŏ	Leaming			
Course Le	earning Outcomes (CL	<b>.0):</b> At the e	and of this course, learners will be able to:			Evel of 1n Expected P	Expected		Engineering Knowledge Droblom Analysia	Design & Development	Analysis, D	Modern Tool Usage	Society & Culture	Environment &	Ethics	Individual &	Communication	Project Mgt.	Life Long L	PS0-1	PSO-2	PSO - 3
CLO-1 :	Describe various therm	nodynamic pr	ocesses and concepts explained by laws		1	2 80	) 75	1	N F	I H	Н	М	М	L	М	М	Н	L	Н	Н	Н	Н
			ntropy, chemical potential, fugacity			2 80			ΗN		Н	М	М	M	Н	М	Н	L	М	М	М	М
	Describe the postulate					2 75			ΛN		М	Н	H	L	М	Н	М	М	Н	Н	Н	Н
	Enumerate on Bose-Ei					2 80			M F		Н	Н	М	M	Н	М	Н	L	М	Н	Н	Н
	Describe the concept of					2 80			Ηŀ		Н	М	Н	L	М	Н	Н	М	Н	Н	Н	Н
CLO-6 :	Analyze the fluctuation	s in small sys	stems			2 80	) 75		N F	I H	Н	М	М	L	М	М	Н	L	Н	Н	Н	Н

Durat	ion (hour)	9	9	9	9	9
S-1	SLO-1	Properties of a thermodynamic system- concept of system and boundaries	Thermodynamic properties of pure substances in solid, liquid, vapor phases	Fundamentals of statistical physics- microscopic approach	Quantum statistics for identical particles	Thermodynamics of small systems and Gibbs equation for nanosystems
3-1	SLO-2	Concept of continuum	Phase diagrams of a pure substance	Concept of phase space	Distinguishable and indistinguishable particles	Features of Hill's nanothermodynamics
S-2	SLO-1	Thermodynamic equilibrium	Gibb's phase rule	Concept of gamma space and $\mu$ space	Grand canonical ensemble	Comparison with classical equilibrium thermodynamics
3-2	SLO-2	Path and point functions	Different kinds of equilibrium	Volumes in phase space	Determination of Gibbs factor	Nanoensemble and its thermodynamic parameters
S-3	SLO-1	Extensive and intensive properties	Entropy and energy criteria for equilibrium	Difference between microstate and macrostate	Photons in an oven	Gibbs energy of single-component nanoparticles
3-3	SLO-2	Zeroth law of thermodynamics and concept of temperature	Ideal gas equation of a state	Most probable distribution	Principle of detailed balance	Fluctuations in small systems
S-4	SLO-1	Energy transfer by heat and work	Deviation from ideal gas behavior	Equal apriori probability and ergodicity	Energy flux	Jarzyanki's inequality
0-4	SLO-2	Isothermal process	VanderWaal's equation of state	Ensemble averages	Bose gas	Classical nucleation thermodynamics
S-5	SLO-1	Adiabatic process	Law of corresponding states	Derivation of Boltzmann equation S=KInW	Structureless Bose gas	Phase diagrams of small systems
3-3	SLO-2	Isochoric process	Determination of critical constants	Thermodynamics of Ensembles	Bose Einstein distribution law for bosons	Thermodynamics of metastable phase nucleation at the nanoscale
S-6	SLO-1	Isobaric process	Temperature and entropy (T-dS) relations	Canonical Ensemble and its thermodynamic parameters	Bose-Einstein condensation	Nanoscale thermodynamic approach in CVD diamond
3-0	SLO-2	First law of thermodynamics	Helmholtz Function Gibbs Function	Microcanonical Ensemble and its thermodynamic parameters	Observation of BECs of cold atoms	Nucleation thermodynamics of cubic boron nitride

S-7	SI 0-1	Specific Heat at constant Pressure and constant volume	General Thermodynamic equations	Stirling Approximation	Superfluid liquid helium	Nonextensivity of nanosystems
3-1	SLO-2	Second law of thermodynamics	Joule-Thomson coefficient	Classification of statistical distributions	Fermi gases for electrons	Nonintensivity of nanosystems
S-8	SLO-1	Reversibility, irreversibility and Carnot cycle	Co-efficient of volume expansion	Maxwell-Boltzmann distribution for classical particles	Structureless degenerate Fermi gas	Principles of non-equilibrium thermodynamics
5-0	SLO-2	Reversed Carnot Cycle as a refrigeration cycle	Adiabatic and isothermal compressibility	Concept of degrees of freedom	Fermi Dirac distribution law for fermions	Concept of Pseudo equilibrium and benard cells
S-9	SLO-1	Third law of thermodynamics	Clapeyron equations	Law of equipartition of energy	Fermions at low temperatures	Out of equilibrium nanosystems
2-9	SLO-2	Unattainability of absolute zero	Clapeyron-Clausius equations	Specific heat capacities of gases	Fermi temperature and degenerate pressure	Cooling by heating in nonequilibrium nanosystems
Learn Reso	•		nodynamics and Statistical Mechanics, Camb len, Introduction to Thermodynamics, Classic	Jand Ctatiatian Milau 3. YUNUS, A.Cel	ngel, Michael Boles, Thermodynamics-An En , Statistical Mechanics, Oxford: Pergamon P	gineering Approach, Tata McGraw Hill,2008 ress, 1972

Learning Asse	essment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weigl	htage)			Final Examination	(EOV) weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#		n (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	100		10	0%	100	0%		0%	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. D.K. Aswal, National Physical Laboratory, New Delhi, dkaswal@nplindia.org	1. Prof. V. Subramaniam, IITM, Chennai, manianvs@iitm.ac.in	1. Dr. Annie Sujatha, SRMIST
2. Dr. Vinay Kumar Gupta, National Physical Laboratory, New Delhi, guptavinay@nplindia.org	2. Dr. R.Gnanamoorthy,IITM,Chennai, gmoorthy@iitm.ac.in	2. Dr. BibhuRanjanSarangi, SRMIST

Cou Coo		18NTC105T	Course Name	BIOLOGICAL PRINC	PLES FOR NANOSCALE SCIEM		Cour ateg		C	)				Pro	fessio	nal C	ore				_	L 3	T 0	P 0	C 3
Co	requisite ourses e Offering	<i>Nil</i> g Department	Nanote	Co-requisite Courses chnology	Nil Data Book / Code	s/Standards	F Ni	Cou	essiv Irses	e _{Nil}	!														
Course	e Learnin	g Rationale (CL	R): The pur	pose of learning this course is to.				Lea	rning						Prog	ram L	earn	ing O	utcor	nes (l	PLO)				
CLR-1		w about various t						1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-4	: Knov : Acqui	w about various r ire insight into bi	molecular biolo ioenergetic cyo	ogy principles cles	nes and transportation across me	embrane		lloom)	y (%)	nt (%)	adge		ient	esearch			tainability		Vork		nce				
CLR-5 CLR-6				transfer technologies ciples and mechanisms				-evel of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability		ndividual & Team Work	Communication	Project Mgt. & Finance	g Leaming			
		ig Outcomes (CL ribe importance o	,	nd of this course, learners will be	able to:			2	80	75	H Enginee	H Problem	H Design	⊥ Analysis	H Modern	K Society	H Environ	H Ethics	H Individu	H Commu	K Project I	⊥ Life Long I	H PS0-1	H PSO-2	K PSO-3
CLO-3 CLO-4	: Desc : Analy	ribe the obtained ze the technique	knowledge or s of Bio energ		s across membrane.			2	75 80	70 70 75	H H H	M M H	H M H	H H H	M H H	M H H	M H H	H H H	M H M H	H H H	M M H	H M H H	M H H	M H H	M H H
CLO-5 CLO-6	: Apply : Desc	ribe various biolo	concept of gen gical principle	e transfer technology s and mechanisms						70 75	H H	H H	H H	H H	H H	H M	H H	H H	H H	M M					
Duratio	on (hour)		9		9	9							9								9	,			
S-1 -	SLO-1	Carbohydrates:	classification	Models of membra	nne DNA re	eplication				Prir	nciples c	of bioe	energe	etics				Introd cells	uctior	า of fo	reign	gene	es into	o anim	าal
•••	SLO-2	Configurations a		ions Membrane structu	re Enzym	nology of DNA replic	atior	ו		Bio	ological	Oxida	tion re	educt	ion rea	action	is	Trans	genic	; techr	nologj	у			
S-2	SLO-1	Sugar derivative polysaccharides		Erythrocytes	Transc	cription				Cai	rbohydra	ate me	etabol	ism				Trans	gene	transi	fer teo	chniqı	ues		
	SLO-2	Storage polysac	ccharides	Erythrocytes mem	brane Types	of RNA molecules				Gly	colysis							DNA I							
S-3	SLO-1	Amino acids: ge	eneral propertie	es Plant cell	RNA s	plicing				Glu	cogene	sis						Embry transf		stem	cell n	nediat	ted ge	ene	
	SLO-2	Peptide bonds		Cell membrane	Splicin	g mechanism				Glu	coneog	enesis	S					Retro	virus	media	ated g	iene ti	ransfe	ər	
S-4	SLO-1	Essential amino	acids	Bacterial cell	Transl	ation				Gly	cogenol	lysis						Plant	tissue	ə cultu	ıre				
•••	SLO-2	Non-essential a	mino acids	Bacterial cell wall	Bacterial cell wall Genetic code						Pentose-phosphate pathway Totipote Coordinated regulation of glycolysis														
S-5	SLO-1	Lipids: classifica	ation	Membrane lipids	Membrane lipids Codon-Anticodo						ordinate I glucon			n of gl	ycolys	sis		Trans	genic	c plant	!s				
	SLO-2	Fatty acids		Structure and fund	tion Codon	Codon-Anticodon interaction Citric acid cycle Agrobacterium mediated g				ted ge	ene tra	ansfe	r												
S-6	SLO-1	Biological signifi	icance of lipids	Membrane protein	s Riboso	mes				Rea	actions	of the	citric a	acid d	cycle			Ti pla:	smid						
	SLO-2	Functions of lipid							Glyoxylate cycle Vectors																

S-7	SLO-1	Nucleic acid	Thermodynamics of transport	Posttranslational Modification of Proteins	Electron transport chain	Animal cell culture
5-1	SLO-2	Chemical structure and base composition	Kinetics of transport	Difference between protein synthesis in eukaryotic and prokaryotic cells	Oxidative phosphorylation	Basic tissue culture techniques
S-8	SLO-1	Double helical structures	Mechanism of transport	Protein structures	Electron-Transfer Reactions in mitochondria	Concepts of transgenic animal technology
3-0	SLO-2	Supercoiled DNA	Active and passive transport	Primary, secondary, tertiary and quaternary structures of protein	Proton pumping	Strategies for the production of transgenic animals and their importance
S-9	SLO-1	Vitamins, water and fat soluble vitamins	ATP-driven active transport	Gene regulation	ATP molecule	Gene therapy
0-9	SLO-2	Deficiency and diseases	lon gradient driven active transport	Concept of operon	ATP synthesis mechanism	Clinical significance
Learn Resou	•	<ol> <li>David L Nelson, Michael M. Cox, Lehn</li> <li>Donald Voet, Judith G. Voet, Biochen</li> <li>David Freifelder, Molecular Biology, 2</li> </ol>		4. George M Ma	alacinski, Freifelders Essentials of Molecular a and R.M. Twyman, Principles of Gene Man	Biology, 4 th ed., Jones & Bartlett, 2015 ipulation and Genomics, 7 th ed., Wiley, 2006

Learning As	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weigh	ntage)			Final Examinatio	o (E0%) woightogo)
	Level of Thinking	CLA – 1	1 (10%)	CLA –	2 (15%)	CLA – 3	8 (15%)	CLA – 4	4 (10%)#	Final Examinatio	n (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	100		10	0%	100			0 %	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. K. Chandru, Trivitron Healthcare Pvt. Ltd. Chennai, chandru.k@trivitron.com	1. Prof. K. Chandraraj, IITM, Chennai, kcraj@iitm.ac.in	1. Dr. G. Devanand Venkatasubbu, SRMIST
2. Dr. Achuth Padmanaban, Baylor College of Medicine, USA, achuthz@gmail.com	2. Dr. P. Balasubramanian, NIT Rourkela, biobala@nitrkl.ac.in	2. Mrs. J. Jositta Sherine, SRMIST

Course Code	18NTC106T	Course Name	DESIGN AND SYN	NTHESIS OF NANOMATERIALS	ourse egory	,	С				Pro	fessio	onal C	ore				_	L 3	T 0	P 0	C 3
Pre-requences of Course Of	INII	Nanote	Co-requisite Courses	Nil Data Book / Codes/Standards		gress ourse		Nil														
000136 0	tering Department	Nanote	onnology	Data Dook / Codes/Standards																		
Course Le	arning Rationale (CL		L	earnir	ng					Prog	ram L	earn	ing O	utcor	nes (I	PLO)						
CLR-1 :	Gain insight into funda	mental princi	ples involved in the growth of nand	omaterials	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
			aterials and their synthesis techni											ty					1			
			al materials and fabrication proce	dures	Ê	(%	(%)	Ð		-	earch			Sustainability		×			.			
	Understand the fundar			a 1	 (Bloom)	cy (	int (°	edg		nen	Sese	æ		stain		Work		Finance	.			
			materials and their fabrication met		) Bu	cien	nme	Mor	SIS.	alopr	gn, F	Usage	a			Team	c	Fine	ning			
CLR-6 :	Evaluale the potential	or various gro	owth approaches in designing nan	omateriais	Thinking	Proficiency (%)	Attainment	g K	nalysis	Development	Design, Res	Tool U	Culture	int &			atio	t. &	Leaming			
	• •		end of this course, learners will be		Level of	Expected	Expected	Engineering Knowledge	Problem A	Design &	Analysis, [	Modern To	Society & (	Environment	Ethics	Individual &	Communication	Project Mgt.	Life Long I	PSO - 1	PSO-2	PSO - 3
			involved in nanoparticle synthesis		2	80	75	М	Н	Н	М	М	М	М	Н	М	Н	L	Н	Н	Н	М
CLO-2 :			s involved in synthesis of quantun		2	80	70	Н	М	Н	Н	М	М	М	Н	Н	Н	М	Н	М	М	М
			nd nanotubes from bulk materials a		2	75	70	М	Н	Н	М	Н	Н	Н	М	М	Н	L	М	Н	Н	Н
			owth using PVD and CVD techniq		2	80	75	Н	М	Н	Н	М	Н	М	Н	М	М	М	Н	Н		Н
			bly, biosynthesis and green synthe	esis of nanomaterials	2	80	70	М	Н	Н	М	Н	М	Н	Н	М	Н	L	Н	Н	Н	Н
CLO-6 :	Design experiments or	n the growth o	of nanomaterials		2	80	75	М	Н	Н	М	М	М	М	Н	М	Н	L	Н	Н	Н	М

Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	Introduction to nanomaterials	Classification of nanoparticle synthesis techniques	1-Dimensional nanostructures: introduction	Fundamentals of thin film growth	Self assembly
3-1	SLO-2	Nanomaterials classification based on dimension	Top down and bottom up approach of nanoparticles synthesis	Various examples of 1D nanostructures	Fundamentals of thinfilm growth (Quantitative approach)	Self-assembled monolayers
S-2	SLO-1	Surface energy	Nanoparticle synthesis by mechanical alloying	Spontaneous growth of 1D nanostructures	Physical vapor deposition	Monolayers of organosilicon
3-2	SLO-2	Surface energies of different surfaces of FCC structure	Nanoparticle synthesis by mechanical milling	Evaporation (dissolution) condensation growth	Evaporation	Monolayers of alkanethiols and sulfides
S-3	SLO-1	Chemical potential as a function of surface curvature	Vapor-phase synthesis of nanoparticles	Fundamentals of evaporation (dissolution) condensation growth	Molecular beam epitaxy (MBE) - principle	Langmuir-Blodgett (LB) technique
3-3	SLO-2	Gibbs-Thompson relation	Inert gas condensation of nanoparticles	quantitative approach	Epitaxial growth of thin films using MBE	Monolayer thin film formation using LB technique
S-4	SLO-1	Concept of Ostwald ripening	Plasma-based synthesis of nanoparticles	Fundamental aspects of (vapour-liquid- solid) VLS growth	Sputtering and Sputtering targets	Graphene preparation methods
3-4	SLO-2	Role of Ostwald ripening in nanoparticle synthesis	Spark plasma method for nanoparticles synthesis	Fundamental aspects of SLS growth	DC and RF sputtering	Mechanical exfoliation
S-5	SLO-1	Fundamentals of homogeneous nucleation	Flame-based synthesis of particles	Au-Si phase diagram	Chemical vapor deposition (CVD)	Liquid phase exfoliation
3-3	SLO-2	Critical radius and critical energy	Combustion synthesis of nanoparticles	VLS growth of various nanowires	Basic chemical reactions in CVD	Role of intercalation in graphene exfoliation
S-6	SLO-1	Effect of temperature on critical size and critical free energy	Spray pyrolysis based synthesis of nanoparticles	Control of the size of the nanowires	Reaction kinetics in CVD	Large area synthesis of graphene
3-0	SLO-2	Process of nucleation and subsequent growth	Nanoparticle nucleation and growth in spray pyrolysis	Catalyst size dependent nanowires growth	Transport phenomena	CVD synthesis of graphene

S-7	SLO-1	Growth controlled by diffusion	Solution processing of nanoparticles	Various precursor sand catalysts used for nanowires growth	Atomic layer deposition (ALD)	Biological synthesis of nanoparticles
3-1		Growth controlled by diffusion (quantitative approach)	Sol-gel processing	SLS growth of various nanowires	Self-limiting growth using ALD	Nanoparticles synthesis using viruses
S-8	SLO-1	I TOWIN CONTROLLED DV SUITACE DROCESS	Kinetically confined synthesis of nanoparticles	Stress induced recrystallization growth	Electrochemical deposition	Nanoparticles synthesis using bacteria
3-0		Growth controlled by surface process (quantitative approach)	Nanoparticle synthesis using micelles		Electrochemical deposition – Nernst equation and film growth	Role of bacteria in nanoparticle synthesis
S-9	SLO-1	Fundamentals of heterogeneous nucleation	Nanoparticle synthesis using microemulsion	Template filling	Sol-Gel Films - spin coating	Green chemistry of nanoparticles
9-9	SLO-2	Fundamentals of heterogeneous nucleation (Quantitative approach)	Aerosol synthesis of nanoparticles	Nanofibres producion using Electrospinning	Dip coating, Electrophoretic deposition	Nanoparticles synthesis using plant extract
Learn Resou	•		ials –Synthesis, Properties & Applications, Ir anoparticles and Nanomaterials -Biological /		nd Poston C, Green biosynthesis of nanopan	ticles: mechanisms and applications, Cabi,

Learning Asses	ssment												
	Bloom's			Conti	nuous Learning Ass	essment (50% weigl	htage)			Final Examination	(50% weightage)		
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA – S	3 (15%)	CLA – 4	(10%)#		i (50% weightage)		
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	30 %		30 %		30 %		30 %		30%			
Level I	Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-		
Level 2	Apply	40 %		40 %		40 %		40 %		40%			
Leverz	Analyze	40 /0	-	40 /0	-	40 /0	-	40 /0	-	4070	-		
Level 3	Evaluate	30 %		30 %		30 %		30 %		30%			
Level 5	Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-		
	Total	100	0%	10	0%	100	0 %	10	) %	100 %			

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. M. Krishna Surendra, Saint-Gobain Research, Chennai, krishna.muvvala@saint-gobain.com	1. Prof. S. Balakumar, University of Madras, balakumar@unom.ac.in	1. Dr. E. Senthil Kumar, SRMIST
2. Dr. M. Sathish, CSIR-CECRI, Karaikudi, msathish@cecri.res.in	2. Prof. S. Ramaprabhu, IIT Madras, ramp@iitm.ac.in	2. Dr. S. Chandramohan, SRMIST

Course Code	18NTC107J	Course Name	ADVANCED CHAF	ACTERIZATION OF NANOMATERIALS	-	ourse tegor		С				Pro	ofessic	onal C	ore					L 3	T 0	P 2	C 4
Pre-requ Cours	es INII		Co-requisi Courses	NII			gress ourse		Nil														
Course Of	fering Department	Nanote	chnology	Data Book / Codes/Standard	S	Nil																	
Course Le	arning Rationale (Cl	<b>R):</b> The purp	pose of learning this course is	to:		L	earni	ng					Prog	ram L	earni	ing O	utcor	nes (	PLO)				
			PM, XPS, AES and SIMS to			1	2	3		1 1	23	4	5	6	7	8	9	10	11	12	13	14	15
CLR-3 :	Analyze different type Asses the performane Apply the advanced t	es of nanostruct ce of broad ran echniques for s		on techniques used in nanotechnology cience and engineering		of Thinking (Bloom)	ted Proficiency (%)	ted Attainment (%)		Engineering Knowleage	Jroblem Analysis Design & Development	(nî	rn Tool Usage	ty & Culture	Environment & Sustainability		tual & Team Work	Communication	Project Mgt & Finance	ong Learning		.2	3
	•		end of this course, learners wi			Level	Expected	Expected			Problem	Analysis, I	Modern .	Society &	Enviro	Ethics	Individual	Comn	Projec	Life Long	- OS4	- OS4	- OSd
			stron and scanning probe mici ass spectrometric techniques.	oscopies and photoelectron, Auger electron		1	80	75		+ 1	и н	Н	Н	Н	Н	Н	М	Н	L	Н	Н	Н	Н
CLO-2 :	Describe the construc	ction and opera	tion of different characterizati	n techniques.		1	80	70		1 1	M H	Н	М	М	М	Н	М	Н	L	Н	М	М	М
CLO-3 :	Perform experiments	using SEM, TE	EM, SPM, XPS, AES, SIMS ar	d optical microscopies.		2	75	70		1 1	Ч Н	Н	Н	Н	Н	Н	М	Н	L	Н	Н	Н	Н
			terizing nanomaterials and de			2	80	75		1 1	Н Н	Н	Н	Н	Н	Н	М	Н	М	Н	Н	Н	Н
GLO-J.	using advanced techi	niques,		mical state of the given /synthesized nanomate	orials	2	80	80			н н	Н	Н	Н	Н	Н	М	Н	L	Н	Н	Н	Н
CLO-6 :	Apply skills acquired	for advanced e.	xperimental characterization			2	80	80		1 1	Н Н	Н	Н	М	Н	Н	Н	Н	М	Н	Н	Н	Н

Durati	on (hour)	15	15	15	15	15
S-1		Image formation, numerical aperture resolution, effective magnification	Scanning electron microscopy; electron optics; imaging with electrons	TEM imaging system	Scanning probe microscopy	Basic principles: X-ray photoelectron spectroscopy(XPS)
3-1	SLO-2	Brightness and contrast, depth of field, aberrations	Magnetic and electrostatic lenses		Scanning probe microscopy: Instrumentation	Auger electron spectroscopy(AES)
S-2	SLO-1	Instrumentation: illumination system, objective lens and eyepiece	Signal detection	FIECITOD SOUTCES	Scanning tunneling microscopy, tunneling current	Instrumentation: XPS
5-2	SL0-2	Steps for optimum resolution, steps to improve depth of field	Detector	Specimen stage and specimen preparation	Probe tips and working environments	Instrumentation: AES
S-3	SLO-1	Imaging modes bright-field and dark-field imaging	Probe size and current	Kinematics of scattering by nucleus	Atomic force microscopy	Photoelectron spectra
3-3	SLO-2	Kohler illumination	Electron–specimen interactions	Electron – electron scattering	Cantilevers and deflection measurements	Auger electron spectra
S 4-5		Lab 1:Introduction to the basics of laboratory	Lab 4: Morphological study of nanostructured material using SEM		Lab 10: Tunneling measurements using scanning tunneling microscope (STM)	Lab 13: Interpretation of XPS spectra
S-6	SLO-1	Phase-contrast microscopy	Topographic contrast	Image modes: Mass–density contrast	Contact AFM	Qualitative analysis
3-0	SLO-2	The behavior of waves from phase objects in brightfield microscopy	Compositional contrast	Diffraction contrast, phase contrast	Non-contact AFM	Peak identification, chemical shifts, composition imaging
S-7		Properties of polarized light	Working distance and aperture size	Selected-area diffraction (SAD) and characteristics	Dynamic contact AFM	Quantitative analysis: peaks and sensitivity factors
3-1	SLO-2	Polarized-light microscopy	Acceleration voltage and probe current	Single-crystal diffraction, polycrystalline diffraction	Taping AFM	Composition depth profiling

S-8		Differential interference contrast microscopy and modulation contrast microscopy: DIC optical system	Astigmatism	Dark field images	Force modulation	Secondary ion mass spectrometry (SIMS): Basic principles
	SLO-2	Modulation contrast microscopy	Specimen preparation	Phase control	Manipulation of atoms	Secondary ion generation
S 9-10		Lab 2: Optical microscope based investigation of microfabricated structures	Lab 5: SE and BSE imaging with SEM	Lab 8: Selected area electron diffraction using TEM (SAED)	DN Lab 11: Nanoparticle size determination using atomic force microcopy (AFM)	Lab 14: Peak identification of in AES spectra, analysis of the AES depth profile
S-11	SLO-1	Physical basis of fluorescence	Elemental imaging using EDS	Advanced SPM techniques	Dynamic and static SIMS	
3-11	SLO-2	Fluorescence microscopy	Applications of elemental imaging	Interpretation of high resolution image	s Kelvin probe force microscopy	SIMS -instrumentation
S-12	SLU-1	Confocal laser scanning microscopy: the optical principle of confocal imaging	Field emission SEM	Ultrahigh resolution TEM	Scanning capacitance microscopy	Sample handling
3-12	SLO-2	Techniques for improving imaging of nanoscale materials	Environmental SEM	Dynamic TEM	Scanning thermal microscopy	Spectrum interpretation
S-13		Diffraction limit	Time resolved microscopy	z-contrast imaging	Magnetic force microscopy	Element identification
3-13		Breaking the diffraction limit	Time resolved microscopy:Applications	Coherent and incoherent imaging	Piezoelectric force microscopy	SIMS depth profiling
S 14-15		Lab 3: Bioimaging using fluorescence microscopy	Lab 6: EDS for chemical identification	Lab 9: Repeat/Revision of the experin	Lab 12: Surface morphology by STM and roughness determination by AFM	Lab 15: Analysis of SIMS profile spectra
Learn Resou	•	2 nd ed., John Wiley & Sons, 2013	son, Fundamentals of light microscopy and e , introduction to microscopic and spectrosco in cell biology, CRC press, 2012	bic mothods 2nd od 5. Bharat Bh	erton, Physical principles of electron microscopy, Isan, Scanning probe microscopy in nano-scienc Ihong Lin Wang, Handbook of microscopy for nar	e and nanotechnology, Springer, 2013

Ŭ	Bloom's	Continuous Learning Assessment (50% weightage)								Final Examination	(EO9/ weightage)			
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA – 3	B (15%)	CLA – 4	4 (10%)#	Final Examination (50% weightage)				
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%			
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20% 20%		20%			
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%			
	Total	10	0 %	100	0 %	100	) %	10	0 %	100 %				

Course Designers												
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts										
1. Dr. N. Vijayan, CSIR-NPL, nvijayan@nplindia.org	1. Prof. S. Balakumar, University of Madras, balakumar@unom.ac.in	1. Dr. C. M. Navaneethan, SRMIST										
2. Mr.K.R. Navaneethakrishnan, GLR Laboratories Pvt Ltd	2. Dr. N. Vijayan, CSIR-NPL, nvijayan@nplindia.org	2. Dr. A. Karthigeyan,SRMIST										

Cou Coo		18NTC108T Course Name	MODELING AND COMPUTATIONAL	TOOLS	Course Category	. (	0				Profe	ssiona	al Core				_	L 3	-	P 0	C 3		
Co	equisite ourses e Offerinç	Nil J Department Nanotechi		gressiv ourses	e _{Ni}	1																	
Course	e Learnin	g Rationale (CLR): The purpos	se of learning this course is to:		Le	earning	1				P	ogra	m Leai	ning (	Dutco	mes (	PLO)						
CLR-1	LR-1: Know the basics of MATLAB and C++						3	1	2	3	4	5 6	6 7	8	9	10	11	12	13	14	15		
	: Acqui	ire detailed knowledge of Density	Functional Theory								-		2	7									
CLR-3	: Utilize	e and gain knowledge of Molecula in detail the Monte Carlo Method	ar Dynamics		) (m	(%)	(%	e		÷	earch		ilideo	5	ž		0						
CLR-4 CLR-5		rstand the basics of modeling and			(Bloc	ncy (	ent (	/ledg		men	Res	e.	istair		Mol		ance	5					
CLR-6		the materials modeling and to de			king	oficie	ainm	Von X	lysis	/elop	sign,	. nsa	& Si	5	earr	ы	& Fin	amin					
					Thin	d Pro	d Atte	ring I	Ana	s De	, Des	8	& Cu		al & T	licati	Mgt. a	g Lea					
Course	e Learnin	a Outcomes (CLO): At the end	l of this course, learners will be able to:		evel of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture Environment & Sustainahility	ß	Individual & Team Work	Communication	Project Mgt. & Finance	-ife Long Leaming	PSO - 1	PSO-2	0-3		
		<b>°</b> ( )	,			EX	Ä	Ē			An								PS		- DSG -		
		ite and solve problems with the b the principles of DFT	asics of computational tools		2		75 70	M H	M M	H H			M M M M		H M	H M	M M	H H	H M	H M	H M		
		the knowledge of molecular dyna	amics to solve problems		2		70	M	M	H			H H		M	H	M	H	H	H	H		
CLO-4	: Solve	and perform modeling with Mont	e Carlo method		2	80	75	H	Н	М			M H		Н	М	Н	М	H	Н	Н		
		ite the computational codes and			2		70	М	М	Н			H M		Η	Н	М	Н	Н	Н	Н		
CLO-6	: Predi	ct the physical properties from mo	odeling and simulation		2	80	70	М	Н	Н	Н	ΗI	M	М	Н	Н	М	Н	Н	Н	Н		
Duration (hour) 9			9		9		9									9	)						
S-1	SLO-1	Introduction to MATLAB-Arrays a Matrices-Matrix operation	and Introduction to MATLAB	Schrodinger equation			Classical molecular dynamics Monte-Carlo met examples					thod: Introductory											
5-1	SLO-2	Eigen value problem	Arrays	Schrodinger equation problem	n for Many Bo	dy		Discussions on Classical molecular dynamics Brief history															
S-2	SLO-1	Solution of simultaneous equatio	on Matrices-Matrix operation	Born-Oppenheimer a	pproximation		•	ht bindir	•					Fun	ndamental key concepts								
5-2	SLO-2	Arithmetic operations	Inverse of a Matrix	Introduction to DFT			dyr	cussion namics		0				Trai	nsform	nation	metho	ods					
S-3	SLO-1	Logical operations	Eigen value problem	Hohenberg-Kohn The			alg	e basics orithm			,	`	MD)			sampl	•						
3-3	SLO-2	lf-else clause	Problems on Eigen value problem	Discussions on Hohe 1	nberg-Kohn t	heoren		cussion orithim	s with	examp	oles on	MD		Disc	ussioi	ns of F	Rejecti	ion sa	mpling	g			
S-4	SLO-1	Loop control structure and stater	ments Arithmetic operations	Hohenberg-Kohn The	eorem 2		Vei	rlet algoi	rithms					Impo	ortanc	e sam	pling						
3-4	SLO-2	Break statement, Switch stateme	ent Logical operations	Discussions on Hohe 2	nberg-Kohn t	heoren	¹ Dis	cussion	s Verle	et algo	rithms			Disc	ussioi	ns on l	Import	tance	samp	ling			
S-5	SLO-1	Self-consistent method	Loop control structure and statements	Kohn-Sham Equation			Pre	dictor -	Correc	ctor alg	gorithm			Integ	gratior	n by im	nporta	nce sa	amplir	ng-the	эоry		
3-3	SLO-2	Functions-data visualization in 2	D and 3D Break statement	Discussion on Kohn-	,	on	Dis	cussion	s on -	Correc	ctor alg	orithn	1	Integ exar		n by im	nporta	nce sa	amplir	ng-			
<b>S</b> 6	SLO-1	Introduction to C++	Switch statement	Exchange-correlation LDA (Basic Concept			MD	) in diffe	rent en	nsemb	les			Metr	opolis	algor	ithm	n					
S-6	SLO-2	Algorithms	If and else if statements	LDA (explanation of		Dis	Discussions MD in different ensembles						Discussions on Metropolis algorithm										

S-7	SLO-1	Structured-programing		Exchange-correlation functions	S	Examples of MD simulation	Introduction to Kinetic Monte Carlo (KMC)
5-7	SLO-2	I/O statements	Examples on data visualization in 2D	GGA (explanation of the equation)		Discussions on qualitative results	Qualitative discussions and basic concept
S-8	SLO-1	Controlstatements	Functions-data visualization in 3D	Basis set		Temperature variation effects in MD	Introduction to Quantum Monte Carlo (QMC)
3-0		Looping (loop statement)	Examples on data visualization in 3D	Types of basis set (basic level	)	Examples on Temperature variation effects in MD	Qualitative discussions and basic concept
S-9	SLO-1	Matrix: Basic matrix operations	Basic concept of Computer clusters, Master Node, Working Node	Flow chart of DFT scfprocedur	re	Limitations of MD	Merits and demerits of KMC and QMC
3-9	SLO-2	Basic idea of parallel programing	Bewolf and Shared memory clusters in introductory level	Discussions on Flow chart		Case study examples	Case study examples
Learn Resou	•	Taylor & Francis 2005 2. J.M. Thijssen, Computational Physics	n, AmiteshMaiti, Molecular modeling techniqu , Cambridge University Press, 2007	applicati	enkel and BerendSmit, Understanding molec ons, Academic Press, 2001 o Giustino, Materials Modelling using Density	U U	

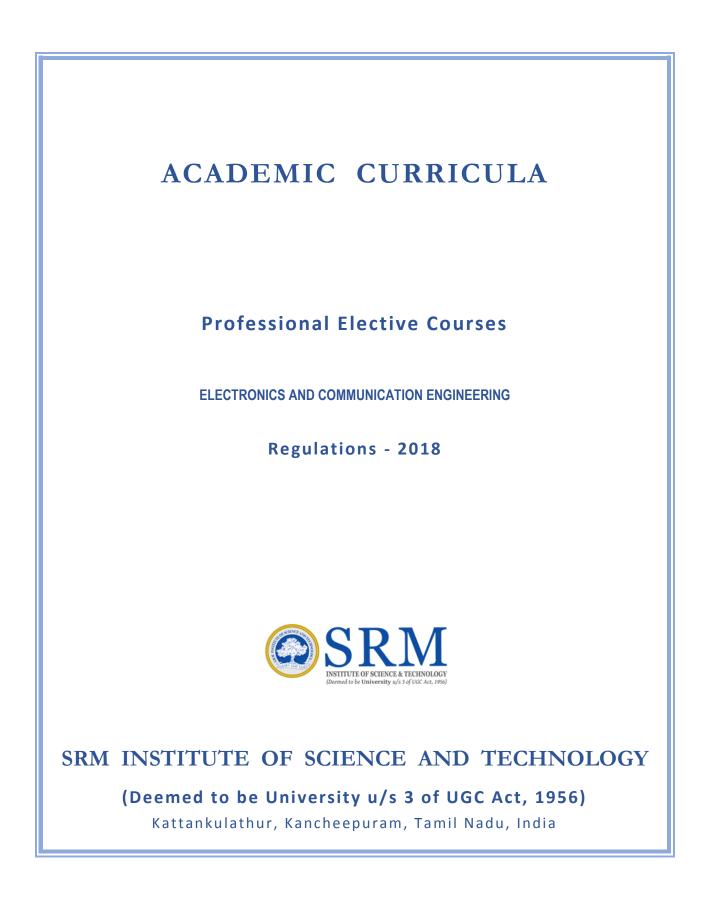
J.M. Thijssen, Computational Physics, Cambridge University Press, 2007
 Andrew R. Leach, Molecular modelling: principles and application, Pearson Education, 2001
 Rizwann Butt, Introduction to Numerical Analysis using MATLAB, Jones and Bartlett Publishers, 2008

Feliciano Giustino, Materials Modelling using Density Functional Theory: Properties and Predictions, Oxford University Press, 2014

Learning Asses	ssment													
	Bloom's		Continuous Learning Assessment (50% weightage)											
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA – S	3 (15%)	CLA – 4	(10%)#	Final Examination (50% weightage				
	Ű	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember	30 %		30 %		30 %	-	30 %		30%				
Level I	Understand	50 78	-	50 78	-	50 78	-	50 78	-	5070	-			
Level 2	Apply	40 %	10.9/			40 %	_	40 %		40%				
Level 2	Analyze	40 /0	-	40 %	-	40 /0	-	40 70	-	4070	-			
Level 3	Evaluate	30 %		30 %		30 %		30 %		30%				
Level 5	Create	30 %	-	30 %	-	30 %	-	30 %	-	3070	-			
	Total	100	0%	100	0%	100	0 %	100	0%	100 %				
	. farmer and a such that the set	CU A 1	1 0 ' T			101 1 10000								

Course Designers											
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts									
1. Dr. Hemant Dixit, GlobalFoundaries, USA, aplahemant@gmail.com	1. Dr. Ranjit Kumar Nanda, IIT Madras, nandab@iitm.ac.in	1. Dr. RanjitThapa, SRMIST									
2. Dr. Murali Kota, Global Foundaries, USA, kvrmmurali@gmail.com	2. Dr. Biswarup Pathak, IIT Indore, biswarup@iiti.ac.in	2. Dr. Saurabh Ghosh, SRMIST									

	urse ode	18NTC109T	Course Name		SOLID	STATE ENGINEERING		Cours Catego		С					Proi	essio	onal C	ore					L 3	T 0	P 0	C 3	
	-requisite ourses	Nil			Co-requisite Courses	Nil			rogre Cour	ssive ses	Nil																
Cour	se Offerin	g Department	Nanote	chnology		Data Bo	ok / Codes/Standards	Nil																			
		ng Rationale (CL	, ,	,	ing this course is to	:			Learning					1					ing O		•						
	CLR-1: Acquire knowledge on various chemical bonding in solids								1 2	2 3	_	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
CLR-	R-2:       Understand theory of crystal diffraction, vibrations and heat capacity         R-3:       Describe the concept of free electron Fermi gas and transport properties														÷			lity									
CLR-		sify semiconducto				<i>ues</i>			(moc	(%)	-	lge		IJ	sear			inab		ŗ		ø					
CLR-		Gain knowledge on excitons, plasmons, polarons and polaritons								nent		wlec	6	pme	, Re	age		usta		۳		nanc	þ				
CLR-										tainr		Kno	alysi	svelo	sign	I Us	ulture	t & C		Tea	tion	& Fi	Leaming				
								Ē		a Pi		ering	ıAn	& De	s, De	T00	& C	men		al &	nica	Mgt.	g Le				
Cour	Course Learning Outcomes (CLO): At the end of this course, learners will be able to:							-	evel of Trinking (Bloom)	Expected Attainment (%)		ginee	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long I	PSO-1	PSO-2	PSO - 3	
	LO-1: Apply the principles of chemical bonding to understand elastic properties of solids							-		C Expected Frontency (%)		<b>H</b> Engineering Knowledge		: De	Ani	Ŵ			击	pul				PS		S	
									28 28			н Н	M M	H M	H H	H M	M M	M M	H H	H M	H H	M M	H H	H M	H M	H M	
	CLO-2 : Analyze crystalline materials and their thermal properties using the concept of phonons CLO-3 : Utilize the Fermi-Dirac distribution function for electrical transport properties of solids									5 70		H	M	H	H	H	H	H	M	H	H	H	H	H	H	H	
	CLO-4 : Calculate carrier concentration and mobility of metals and intrinsic and extrinsic semiconductors									0 75		M	H	H	M	H	H	H	H	H	H	M	H	H	H	H	
	CLO-5 : Apply the concept of quasi-particles to understand the optical properties of solids								2 8	0 70		Н	М	Н	Н	Н	М	М	Н	М	Н	М	Н	Н	Н	Н	
CLO-	CLO-6 : Utilize the spectroscopic concepts to analyze the properties of materials						1	2 8	0 75	i	Н	М	М	Н	Н	М	М	Н	Н	Н	М	Н	Н	М	Н		
_													_														
Dura	ion (hour)		9			9	9			9 9									)								
S-1	SLO-1	Interatomic force crystal binding	es: Understan	ding of	Crystal diffraction		Free electron gas				Nearly free electron model Electronic interband transiti									ransiti	ons						
5-1	SLO-2	Bonding in solid	ls		Bragg's law		Energy levels of free elec dimension	tron g	n gas in one Nearly free electron model (Quantitative approach)						Direct and indirect transitions												
	SLO-1	Van der Waals i	interaction		Reciprocal lattice Zones (BZ)	vectors and Brillouin	Fermi- Dirac distribution					Prismanny Concept of exciton								ons	15						
S-2	SLO-2	Quantitative app	proach of Lond	don		e and oblique lattice	Effect of temperature on t	he Fe	rmi –	Dirac	Bloch f	unoti	lan						Energy level diagram of excitons								
	SL0-2	interaction			BZ OI SQUARE IALIIO	e and oblique lattice	distribution function				BIOCH	uncu	on						Energ	ly leve	a alag	gram	or exc	cilloris			
S-3	SLO-1	Equilibrium lattic	ce constants		Vibration of crysta	ls with monoatomic bas	is Free electron gas in three (Quantitative approach)	dime	nsions	5	Classifi	catio	on of s	solids	using	band	d gap		Frenkelexcitons								
0-5	SLO-2	Cohesive energy	У		Dispersion relation	n	Fermi energy, density of s	states			Metals,	sen	nicono	ductor	rs and	insu	lators		Frenk molec				ali hal	lides a	and		
	SLO-1	Nature of bondir	ng in ionic cry	stals	Group velocity		Heat capacity of the free	electro	on gas	;	Direct a semico			ct ban	d gap				Mott-	Wann	ierexc	citons	;				
S-4	SLO-2	Madelung const	lant		Quantization of el	astic waves (concept of	Heat capacity of the free e (Quantitative approach)	electro	on gas	;	Relation				lgap e	energ	y, pho	oton	n Modified Rydberg's equation								
	SLO-1	Madelung energ	<i>ay</i>		1 /	acity-Planck's distributio	n Electrical conductivity				Concep			07	micon	ducto	ors		Quan	titativ	e appi	roach	h for R	aman	effec	:t	
S-5	SLO-2	Evaluation of Ma	adelung const	lant	Normal modes		Ohm's law				Effectiv	e ma	ass						Applic	cation	: Rarr	nan ei	ffect ir	n solia	ls		
	SLO-1	Covalent bondin	ng		Phonon -density of dimensions	of states (modes) in one	Electrical resistivity				Intrinsio												in me	n metals			
S-6	SLO-2	Metallic and hyd	lrogen bondin	g		of states (modes) in thre	e Matthiessen's rule		Intrinsic carrier concentration – quantitative Pla							ive Plasma frequency											


dimensions

approach

				1		1
0.7	SLO-1	Hooke's law in solids	Debye model for density of states (modes)	Motion of electron in magnetic field	Impurity conductivity: doping	Concept of polarons
S-7	SLO-2	Elastic strain components (Quantitative treatment)	Cutoff frequency in Debye solids	Cyclotron frequency	Donor and acceptor states	Concept of polaritons
S-8	SLO-1	Dilation in solids	Debye – T³ law	Hall effect: quantitative approach	Zener tunneling, Zener breakdown and Zener diodes	Defects in solids – lattice vacancies
3-0	SLO-2	Elastic stress components	Debye – T ³ law (Quantitative approach)	Hall coefficient	Avalanche bvreakdown and Avalanche diodes	Schottky and Frenkel defects
S-9	SLO-1	Elastic compliance components	Einstein model for density of states	Thermal conductivity of metals: Wiedemann-Franz law	Super lattices and quantum wells	Color centers: F centers
3-9	SLO-2		Einstein model for density of states – quantitative approach	Lorentz number	Multi Quantun well light emitting diodes (MQW-LEDs)	Other centers in alkali halides
Learn Resou	•	<ol> <li>C. Kittel, Introduction to Solid State Pl 2. Fundamentals of Solid State Engineer</li> </ol>	hysics, 8 th ed., Wiley, 2015 ring, ManijehRazeghi, Kluwer Academic Pub	0	Solid State Electronic Devices, Ben. G. Streetman a 2006	und Sanjay Banerjee, 7 th Edison, Pearson,

Learning Ass	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examinatio	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	4 (10%)#		in (50% weightage)
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total		0%	10	0%	10	0%		0 %	1(	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Hemant Dixit, GlobalFoundaries, USA, aplahemant@gmail.com	1. Dr. Ranjit Kumar Nanda, IIT Madras, nandab@iitm.ac.in	1. Dr. E. Senthil Kumar, SRMIST
2. Dr. Krishna Surendra Muvvala, Saint Gobain Research, India, Krishna.muvvala@saintgobain.com	2. Dr. M. S. Ramachandra Rao, IIT Madras, msrrao@iitm.ac.in	2. Dr. Kamala Bharathi, SRMIST



Course Code	18ECE203T	Course Name	SEMICONDUCTOR D	EVICE MODELING	-	ourse tegory	,	E				Profe	ssiona	al Eleo	ctive				-	L 3	T 0	P 0	C 3
Pre-requis Course	s TRECCTUZJ		Co-requisite Courses			Co	gressi ourses		lil														
Course Offe	ering Department	Electronics and	Communication Engineering	Data Book / Codes/Stand	dards	Nil																	
Course Lea	rning Rationale (CLF	R): The purpose of I	earning this course is to:			Le	earnin	g				I	Progra	am L	earniı	ng Ou	utcom	ies (P	'LO)				
CLR-1: U	Itilize the properties of	semiconductor mater	ials			1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: U	Itilize the mechanisms	that occur in a PN ju	nction																_				
CLR-3 : U	Itilize the characteristi	cs and modeling of B.	IT									_			≥								
CLR-4 : U	Itilize the modeling as	pects of MOSFET				(mo						arch			pili								
CLR-5 : //	lentify the effects of M	IOSFET scaling and s	pecial MOSFETs			loor	y (%)	t (%)	dge		ent	ese			aine		Work		e				
CIR-h .	Inderstand the fundan elds.	nental physical proces	ses of semiconductor devices to r	neet the challenge of these dyr	namic	Thinking (Blo	roficiency	Attainment	Knowledge	Analysis	Development	Design, Re	Usage	Culture	& Sustainability		Team V	ation	& Finance	arning			
		1					ad Pr	ed Att	ering	n Ana	∞ŏ	s, De	Tool	∞ŏ	ment		∞ŏ	inicat	Mgt.	ng Le:	_		~
Course Lea	rning Outcomes (CL	<b>O):</b> At the end of thi	s course, learners will be able to:			Level of	Expecte	Expecte	Engineering	Problem	Design	Analysi	Modern	Society	Environ	Ethics	Individual	Commu	Project	Life Lon	PSO - 1	PSO - 2	PSO - 3
CLO-1 : 10	lentify and Choose se	miconductor material	s for various applications			2	80	70	Н	Н	-	-	-	-	-	-	-	-	-	-	-	-	-
CI O 2 · //	torprot the characteri	ction of lunction dovid	000			2	95	75	Ц	Ц		Ц										-	-

CLO-2 :	Interpret the characteristics of Junction devices	3	85	75	Н	Н	-	Н	-	-	-	-	-	-	-	-	-	-	-
CLO-3 :	Modify and model the BJT parameters for better performance	3	75	70	Н	Н	-	Н	-	-	-	-	-	-	-	-	-	-	Н
CLO-4 :	Evaluate and optimize the performance of MOSFET	3	85	80	Н	Н	-	Н	-	-	-	-	-	-	-	-	-	-	Н
CLO-5 :	Build new devices with small channel	3	85	75	Н	-	-	Н	-	-	-	-	-	-	-	-	-	-	Н
CLO-6 :	Explain the equations, approximations and techniques available for deriving a model with specified properties, for a general	3	80	70	н	н		н											н
020-0.	device characteristic with known qualitative theory	5	00	10			-		-	-	-	-	-	-	- 1	-	-	-	

Duratio	on (hour)	9	9	9	9	9
S-1		Electron, Hole Densities In Equilibrium: Distribution of quantum states in energy band	PN Junction under thermal equilibrium: Built in potential, concept of space charge layer	Current components, Basic BJT parameters,	MOS diode	Scaling of MOSFETS
	SLO-2	Fermi – Dirac Statistics	Problem Solving	Limitations on the junction voltage	Operation of Ideal MOS diode (at VGB >0)	Effect of Gate voltage on carrier mobility
• •	SLO-1	Electron concentration conduction band	Distribution of electric filed and potential within the space charge layer for abrupt junctions at Zero bias	Capacitances in a BJT,	Operation of ideal MOS diode (at VGB <0)	Effect of Drain voltage on carrier mobility
S-2	SLO-2	Hole concentration Valence band	Distribution of electric filed and potential within the space charge layer for abrupt junctions at Zero bias	Switching of BJT	Operation of ideal MOS diode with and without oxide charge	Effect of Drain voltage on carrier mobility
S-3	SLO-1	Carrier concentration in intrinsic semiconductors	Distribution of electric filed and potential within the space charge layer for linearly graded junctions at Zero bias	Ebers-Moll model	Effects of mobile lonic charges	Channel length modulation
3-3	SLO-2	Position of Fermi level in extrinsic semiconductors	Distribution of electric filed and potential within the space charge layer for linearly graded junctions at Zero bias	Problem Solving	Problem Solving	Breakdown and punch through
S-4	SLO-1	lonization of impurities, Equilibrium electron and hole concentration	PN Junction under applied bias: Depletion layer capacitance in an abrupt PN junctions	Early effect (CB & CE)	Oxide charges and Interface states	Sub threshold current
	SLO-2	Problem Solving	Problem Solving	Operation of BJT at high frequencies: Charge control model	C-V Characteristics	Sub threshold current
S-5	SLO-1	Fermi level at thermal equilibrium	Depletion layer capacitance with arbitrary doping profiles	Small signal equivalent circuit,	Problem Solving	Short channel effects

	SLO-2	Problem Solving	Static current voltage characteristics of PN junction,	Problem Solving	Threshold voltage of MOSFET	Short channel effects
S-6	SLO-1	Excess Carriers: Generation and recombination of carriers	Current-voltage relationship in an infinitely long diode,	Design of high frequency transistors	Bulk charge model	Meyer's model
3-0	SLO-2	Mobility of carriers	Quasi Fermi level under bias condition	Problem Solving	Problem Solving	Small signal model
S-7	SLO-1	Charge transport in semiconductors: Drift current	Current –voltage relation in practical diodes having finite lengths	Second order effects in BJT: Non-uniform doping in the base	square law method (Level 1 in SPICE	MOSFET scaling
3-1	SLO-2	Hall effect	Ideality factor	Non-uniform doping in the base	square law method (Level 1 in SPICE	Non-uniform doping in channel
S-8	SLO-1	Diffusion current	Transient analysis: Time variation of stored charge	Variation of 6 with collector current	Level 3 model in SPICE	SOI MOSFET
0-0	SLO-2	Problem Solving	Problem Solving	High injection in collector	BSIM Models	SOI MOSFET
S-9	SLO-1	Current density equations	Reverse recovery of a diode, charge storage capacitance	Heavy doping effects in the emitter	Comparison of Models	Buried channel MOSFET
0-9	SLO-2	Current density equations	Problem Solving	emitter crowding in bipolar transistors	Comparison of Models	Fin FET
Learn	ina	1. Nandita Das Gupta, Amitava Das Gup	ta, Semiconductor devices, modeling and Te	echnology, Prentice Hall of 3. S.M. Sze	e, Semiconductor Devices-Physics and Tech	

Learning Resources India, 2004
 Philip. E. Allen Douglas, R. Hoberg, CMOS Analog circuit Design, 2nd ed., Oxford Press, 2002

 S.M. Sze, Semiconductor Devices-Physics and Technology, John Wiley and Sons, 1985.
 Kiat Seng Yeo, Samir R.Rofail, Wang-Ling Gob, CMOS/BiCMOS VLSI-Low Voltage, Low Power, Pearson 2003

Learning Asse	essment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weigl	htage)			Einal Examination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA – S	3 (15%)	CLA-4	l (10%)#		i (50% weigi itage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	30 %		30 %		30 %		30 %		30%	
Level I	Understand	30 //	-	30 70	-	30 %	-	30 %	-	3070	-
Level 2	Apply	40 %		40 %		40 %		40 %		40%	
Level 2	Analyze	40 /0	-	40 /0	-	40 /0	-	40 %	-	4070	-
Level 3	Evaluate	30 %		30 %		30 %		30 %		30%	
Level 3	Create		-		-	30 %	-		-		-
	Total	10	0 %	100	) %	100	0 %	10	0 %	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Dr. P. Aruna Priya, SRMIST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	2. Dr. J. Manjula, SRMIST

Course Code	18ECE206J	Course Name	ADVANCED DIGITAL S	SYSTEM DESIGN	Course Category	Е	Professional Elective	L 2	T 0	P 2	C 3
Pre-requisi Courses	NII		Co-requisite Courses		Progree	ssive ses	Nil				
Course Offer	ring Department	Electronics	and Communication Engineering	Data Book / Codes/Standards	Nil						

Course L	earning Rationale (CLR): The	e purpose of learning this course is to:	L	earniı	ng				I	Progr	ram L	earni	ng Oı	utcom	nes (P	LO)			
CLR-1 :	Understand advanced Boolean	n theorems for logic simplification and implementation	1	2	3	1	2	3	4	5	6	7	8	9	10	11 [·]	12 1	3 14	1 15
CLR-2 :	Understand the formal procedu	ires for the analysis and design of synchronous and asynchronous sequential circuits																	
CLR-3 :	Understand concept of Program	mmable Devices (PROM, PLA, PAL, CPLD and FPGA) and implement combinational and																	
ULK-J.	sequential logic circuits using the	hem.							_			≥							
CLR-4 :	Adopt systematic approach with	th the use of ASM chart ASMD chart, RTL representation for the design of digita circuits	Ê	(%)	()				search			Sustainability		~					
-	and systems		(Bloom)	y (9	nt (%	dge		ent	ese			aina		Work		g			
		anguage for FPGA in electronic design automation of digital circuits	g (B	Proficiency (%)	Attainment (%)	Knowledge	s.	Development	n, Re:	Tool Usage	e	Sust		ح ۲		Finance	rning		
CLR-6 :	Develop the ability to simulate of	circuits for more advanced design projects.	Thinking	ofic	tain	Knc	Analysis	svelo	Design,	۱Us	Culture	∞ŏ		Team	tion	∞ŏ	arni		
			Ъi	dPr	d At	ring	Ana	& De	Ğ,	<u>6</u>	& C	nen		al &	ica	∕lgt.	gLe		
Course L	earning Outcomes (CLO): At	t the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering	Problem	Design 8	Analysis,	Modem .	Society 8	Environment	Ethics	Individual &	Communication	Project Mgt.	Life Long	PSO - 2	
CLO-1 :	Apply advanced theorems to si	implify the design aspects of various practical circuits	3	80	75	М	-	-	-	-	-	-	-	-	-	-		-	-
CLO-2 :	Analyze and design synchrono	bus sequential circuits	3	80	70	-	М	М	-	-	-	-	-	-	-	-		-	-
CLO-3 :	Identify methods to analyze and	d design Asynchronous sequential circuits	3	75	70	-	М	М	-	-	-	-	-	-	-	-		-	-
CLO-4 :	Implement various digital circui	its using Programmable Logic Devices	3	80	75	-	М	М	-	-	-	-	-	-	-	-		-	-
CLO-5 :	Design and implement digital c	ircuits using VHDL.	3	80	70	-	Н	Н	Н	Н	-	-	L	Н	М	-		-	L
CLO-6 :	Perform experiments in the lab	poratory with hardware and as well with software (VHDL) to simulate and verify the design	3	80	70	-	-	-	-	-	-	-	-	-	-	-	H F	1 -	L

Durat	on (hour)	12	12	12	12	12
	SLO-1	Shannon's Expansion theorem	state reduction	Analyze asynchronous sequential circuit	Dynamic hazards	Xilinx 3000 series FPGA
S-1	SLO-2	Shannon's Expansion theorem application	state reduction	flow table reduction	Essential hazards	Xilinx 3000 series FPGA
S-2	SLO-1	Shannon's Expansion theorem and its application	state assignment	races-state assignment	Programming logic device families	Xilinx 4000 series FPGA
5-2	SLO-2	Consensus theorem	state assignment	Variables Signals, Constants, Sequential statements VHDL processes	Designing synchronous sequential circuit using PROM	Xilinx 4000 series FPGA
S 3-4		Lab 1: Implement six-variable function using four-variable function generators	Lab 4: Implement hazard-free circuits	Lab 7: VHDL Programming Practice	Lab 10: Construct multiplexers, de- multiplexers in VHDL	Lab13: Implement BCD adder, comparator in VHDL
S-5	SLO-1	Reed-Muller Expansion technique	Design of synchronous sequential circuits	races-state assignment	Designing synchronous sequential circuit using PROM	Design of sequential circuits (using VHDL)
3-5	SLO-2	Reed-Muller Expansion technique	Design of synchronous sequential circuits	Transition table and problems in transition table	Designing synchronous sequential circuit using PROM	Design of sequential circuits (using VHDL)
S-6	SLO-1	Multiplexer logic as function generators	Introduction to VHDL, Entity and Architecture description	Transition table and problems in transition table	Programmable Array Logic (PAL)	Design of sequential circuits (using VHDL)
3-0	SLO-2	Implementation of Multiple output logic functions	VHDL Data types and Operators	Design of asynchronous sequential circuit	Programmable Array Logic (PAL)	Design of sequential circuits (using VHDL)
S 7-8		Lab 2: Implement Reed-Muller expressions using logic gates.	Lab 5: Demo of VHDL programmes, Simple programmes		Lab 11: Construct code converters, 4-bit binary adders in VHDL	Lab 14: Mini Project Work
S-9	SLO-1	Mealy and Moore machines	ASM chart and realization using ASM	Design of asynchronous sequential circuit	Programmable Logic Array (PLA)	Additional circuit designs using VHDL

	SLO-2	Clocked synchronous sequential circuit design procedure				Additional circuit designs using VHDL				
S-10	SLO-1	State diagrams	Concurrent, Sequential Assignment Statements, Types of Modeling in VHDL	Static hazards	FPGA-Xilinx FPGA	Additional system designs using VHDL				
5-10	SLO-2	State table	Behavioral, dataflow and structural modeling	Static hazards	FPGA-Xilinx FPGA	Additional system designs using VHDL				
S 11-12	SLO-1 SLO-2	Lab 3: Implementation of Sequence detector circuit.	Lab 6: VHDL Programming Practice		Lab 12: BCD adder, comparator, Design of Sequential circuits (using VHDL)	Lab 15: End-Semester Practical Examinations				
	<ol> <li>Charles H. Roth, Jr. University of Texas at Austin. Larry L. Kinney, Fundamentals of Logic Design, 7th ed., Cengage Learning, 2012</li> <li>Richard S. Sandige, Michal L. Sandige, Fundamentals of digital and computer design with VHDL, Mc Graw Hil, 2014</li> <li>Charles H. Roth, Jr. Digital Systems Design using VHDL, CENGAGE Learning, 20</li> <li>Morris Mano M, Michael D. Ciletti, Digital Design with an Introduction to the Verilog Pearson. 2014</li> </ol>									

Learning As	sessment												
	Bloom's		Continuous Learning Assessment (50% weightage)										
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#		n (50% weightage)		
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%		
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%		
	Total	100	0 %	10	0 %	10	0 %	10	0 %	100%			

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Mr. B. Viswanathan, SRMIST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	

Course Code	18ECE222T	Course Name	ADHOC AI	ND SENSOR NETWORKS	Course Category	l	E	Professional Elective					C 3								
Cours	Pre-requisite Courses     Nil     Co-requisite Courses     Nil     Progressive Courses																				
Course Of	fering Department	Electro	onics and Communication Engine	ering Data Book / Codes/Star	ndards Nil																
Course Learning Rationale (CLR):       The purpose of learning this course is to:       Learning       Program Learning Outcomes (PLO)											))										
			various routing protocols		1	2	3	1	2	3	4	5	6	7	8	9 1	0 11	12	13	14	15
CLR-3 : CLR-4 : CLR-5 :	Analyze energy manag Identify insights of Sen Analyze various aspec	gement in Ad sor network ts Hybrid net	ept of Quality of Service hoc Networks works and routing configuration hoc network routing protocols an	id sensor networks	Thinking (Bloom)	oficiency (%)	ainment (%)	Knowledge	lysis	velopment	sign, Research	Usage	lture	& Sustainability		Team Work	on & Finance	Learning	Professional	Project Management	Analyze & Research
	•	•	end of this course, learners will be			Expected Proficiency	G Expected Attainment (%)	c Engineering Knowledge	C Problem Analysis	- Design & Development	Analysis, Design,	_			Ethics	Individual &	Communication Project Mat. & Finance	Life Long Let	PSO-1: Prof Achievement	PSO – 2: I Technique	PSO – 3:
			etworks and various routing proto s such as MAC Layer and QOS	cois used in Ad noc networks			70	H H	M M	L	M	-						M	-	-	H H
	Identify energy manage				3		70	L	M H	-	M	-	-		-			H	11/1	-	1
	Analyze the Sensor ne				3	80	75	H	L	-	M	-	-					-	- 1	M	H
	CLO-5 : Identify Hybrid networks and routing configuration					80	70	-	-	Н	M	-	-	М	-			-	-	-	-
			hoc networks and sensor networ	rks	3		70	Н	М	-	L	-	-	Н	-			М	-	-	Н

Duratio	on (hour)	9	9	9	9	9
S-1	SLO-1	Cellular and Ad hoc Wireless Networks	Quality of service in Ad hoc wireless networks, Real-Time Traffic support	Energy Management-Needs	Sensor Networks, Applications. Comparison with Ad hoc network,	Hybrid wireless network, Introduction, classification
3-1	SLO-2	Applications of Ad hoc Wireless Networks	Issues and challenges in providing QoS Classifications of Energy Manage Schemes		Issues, challenges in designing sensor network Sensor Network Architecture	Multi-hop cellular network (MCN) Architecture
	SLO-1	Issues in Ad hoc Wireless Networks	Classifications of QoS solutions Battery Management Scheme-Overview		Layered Architecture, Clustered Architecture	Mobile assisted data forwarding (MADF) Architecture
S-2	SLO-2		MAC Layer solution-cluster TDMA, IEEE 802.11e, DBASE	Data link layer solution-Lazy packet scheduling scheme,	Data Dissemination, Flooding, Gossiping, Rumor Routing, Sequential Assignment Routing	Hybrid wireless Network (HWN) Architecture
S-3		Classifications of MAC protocols-Floor Acquition Multiple Access protocols	Network Layer solution-QOS routing protocols,	Battery Aware MAC protocol	Cost field approach	Routing in Hybrid wireless network Base assisted ad hoc routing (BAAR)
3-3	SLO-2	Collision Avoidance Time Allocated Protocol	Ticket Based QOS Routing protocols,	Network Layer solution	Data Gathering, Direct Transmission, Binary scheme	Operation of BAAR protocol
S-4		Routing Protocol for Ad hoc wireless network-Classification	Predictive location based QOS routing	Transmission Power Management Schemes-Data link layer solution	Chain Based Three level scheme	Base driven multi-hop bridging protocol(BMBP)-Message used
0-4	SLO-2	Table driven Routing Protocols-Wireless Routing Protocol	QOS frame work	Dynamic power adjustments policies, Distribute topology control Algorithm	MAC protocols for sensor Networks-Self organizing MAC, CSMA Based MAC	BMBP procedure
S-5		On demand routing protocols-Dynamic Source Routing protocol	QOS models	Construct distributed power control loop, Centralized Topology control Algorithm	Location discovery-Indoor and sensor network localization	Issues in pricing Multi-Hop wireless networks
3-3	SLO-2	Multicast Routing Architecture Reference model	QOS Resource Reservation Signaling	Network layer solution-common power protocol	Quality of Sensor Networks-coverage,	Pricing in Multi-Hop wireless WANs
S-6	SLO-1	Tree Based Routing	INSIGNIA-QOS framework	Minimum power consumption Technique	Exposure	Pricing in Ad hoc Wireless Networks

	SLO-2	Mesh Based Routing	Operation of INSIGNIA framework, Advantages and disadvantages	Minimum battery cost Routing	Recent Trends In Sensor Networks-Energy	Power control scheme in Hybrid Wireless Networks, Issues in using variable power in IEEE 802.11
S-7	SLO-1	Energy Efficient Multicasting-Routing protocols	INORA-Coarse feedback scheme,	Higher Layer solution	Transport Layer Issue	Power optimization scheme
3-1	SLO-2	Cluster Adaptation of Multicast protocols	Class based fine feedback scheme		Security-Localized Encryption and Authentication protocols (LEAP)	Load Balancing in Hybrid Wireless Networks
S-8	SLO-1	Multicast with QOS Guarantees-Real Time Multicasting Protocols	SWAN-Model		Intrusion Tolerant Routing in Wireless Sensor Network (INSENS)	Preferred Ring Based Routing Scheme
3-0	SLO-2	Priority Scheduling Protocols	Advantages and Disadvantages	Addition of separate signaling scheme	Real – Time communication	Preferred inner Routing Scheme(PIRS)
S-9		Application Dependent Multi Cast Routing- Role Based,	Proactive RTMAC framework	Device power Management Scheme-Low Power Design of Hardware	SPEED Protocol	Preferred outer Ring Routing Scheme (PORS)
3-9	SLO-2	Content Based, Location Based	Advantages and Disadvantages	Hard Disk Drive (HDD) power consumption		Preferred Destination/Source Ring Based Routing Scheme

1. Siva Ram Murthy C., Manoj B.S, Ad hoc Wireless Networks – Architectures and Protocols, 2nd ed., Pearson, Learning 2004 Resources 2. Feng Zhao, LeonidasGuibas, Wireless Sensor Networks, 1st ed., Morgan Kaufman Publishers, 2004

3. C.K.Toh, Ad hoc Mobile Wireless Networks, 7th ed., Pearson, 2002

Thomas Brag, Sebastin Buettrich, Wireless Mesh Networking, 3rd ed., O'Reilly Publishers, 2007

Learning Assess	ment										
	Bloom's			Final Examination (50% weightage							
	Level of Thinking	CLA – 1	1 (10%)	CLA – 2	2 (15%)	CLA – S	3 (15%)	CLA – 4	(10%)#		(50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	30 %		30 %		30 %		30 %		30%	
Level I	Understand	50 %	-	30 70	-	30 %	-	30 %	-	30%	-
Level 2	Apply	40 %		40 %		40 %	_	40 %	-	40%	
Leverz	Analyze	40 /0	-	40 /0	-	40 /0	-	40 /0	-	4070	-
Level 3	Evaluate	30 %		30 %		30 %		30 %		30%	
Levers	Create	30 % - 30 % - 30 % -				-					
	Total	100	)%	100	) %	100	) %	100	)%	10	) %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Mrs. S. T. Aarthy, SRM IST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	

Course Code	18ECE224T	Course Name	CRYPTOGRAPHY AND	NETWORK SECURITY	Course Category	Е	Professional Elective	L 3	T 0	P 0	C 3
Pre-requisi Courses	NI		Co-requisite Courses		Progree		Nil				
Course Offer	ring Department	Electron	ics and Communication Engineering	Data Book / Codes/Standards	Nil						

Course Learning Rationale (CLR): The purpose of learning this course is to:	ale (CLR): The purpose of learning this course is to: Learning Program Learning Outcomes (PLO)																
CLR-1: Utilize classical and modem encryption methods	1	2	3		2	3	4	5	6	7	8	9	10	11	12 1	3 14	15
CLR-2: Utilize the different key generation standards										2						rent	ch
CLR-3: Utilize the various techniques in authentication of information	Ē		$\widehat{}$				Research			Sustainability						gem	Research
CLR-4: Analyze the aspects in network security	<u>loo</u>	y (%)	it (%)	-	ĥ	ent	ese			aine		Work		Ge	_	Managem	Re
CLR-5: Identify the effect of various malwares and counter measures	Thinking (Bloom)	Proficiency	Attainment	-		Develonment	Ľ Ľ	age	e	Sust		2		& Finance	ng ional	ťW	e &
CLR-6: Understand various conventional and modern cryptography techniques with its added security features	king	ofici	tain	2			Design,	l ls	Culture	∞ŏ		Team	ion	<u>8</u> Е	earning	t oject I	es Analyze
	Thir	d P	dAt				ے ا	Tool Usage	& Cl	nen		8	lical	Agt.		L Pue	
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected		Eriyiritetiriy Mowedye Dashlam Analysis	Design 8	Analysis,	Modern .	Society &	Environment	Ethics	Individual &	Communication	Project Mgt.	Life Long PSO-1: P	Achiever PSO - 2	PSO - 3
CLO-1: Identify the methods of classical and modern Encryption	3	80	75		· -	M	L	-	-	-	-	-	-	-	H ·		Н
CLO-2: Identify the concepts of Number theory, Key generation and distribution standards	3	80	70		.   H	I M	-	-	-	-	-	-	-	-		· H	-
CLO-3: Analyze Message authentication and Digital Signature algorithm.	3	75	70		· N	1 L	-	-	-	-	-	-	-	-	H ·		М
CLO-4: Obtain information about various forms of network security	3	80	75		H N	1 L	-	-	-	-	-	-	-	-			М
CLO-5 : Analyze the effects of intrusion, viruses, firewalls and various levels of system security	3	80	70			-	-	-	-	-	-	-	-	-	M	- M	-
CLO-6: Obtain the knowledge about various encryption techniques, standards and security aspects			70	Ι	1 -	-	L	-	-	-	-	-	-	-			М

Durati	on (hour)	9	9	9	9	9
•	SLO-1	Security Services Mechanisms	Number Theory	Basics of Message authentication codes	IP Security	Intruders
S-1	SLO-2	Attacks	Basics of Modulo operations, additive and multiplicative inverse	Basics of Message authentication codes	Overview of techniques	Intrusion
• •		Network Security Model	Euclidean algorithm	Requirements of MAC	Architecture	Intrusion Detection
S-2	SLO-2	Block cipher, stream cipher, symmetric and Assymetric	Extended Euclidean algorithm	MAC logic	Authentication Header	Techniques
S-3	SLO-1	Conventional Encryption techniques	Fermet's theorem	MD5 Logic, MD5 Compression Function,	Authentication Protocols	Password Management
3-3	SLO-2	Substitution and transposition techniques	Euler's theorem	MD4, Strength of MD5	Mututal authentication, one way authentication	Techniques
S-4	SLO-1	Steganography	Key cryptography	Requirements for a Hash Function, simple Hash Function,	Encapsulating Security Payload	Viruses
3-4	SLO-2	Basics of LSB, Histogram,DE techniques	Key cryptography	Birthday Attacks, Block Chaining Techniques	Encapsulating Security Payload	Worms
S-5	SLO-1	DES	RSA	Securities	Security Associations	Advanced Security
3-3	SLO-2	Algorithm and examples	Algorithms and examples	HASH - MAC	Techniques overview	OS Security
	SLO-1	SDES	Key distribution Birthday Attack Key		Kerbros V4, V5 certificate	WLAN Security
3-0	S-6 SLO-2	Block cipher modes operation	Algorithms	SHA	Authentication Procedure	Ad hoc Network Security

S-7	SLO-1	Overview of IDEA	Key Management	Digital Signature standard	PGP	GSM Security
3-1	SLO-2	Overview of Blowfish	Algorithms	Overview of blocks	Email Security	E-commerce Security
S-8	SLO-1	Overview of RC5	Diffie Hellman key exchange	Digital Signature Algorithms	Web security requirements	Cloud Computing Security
3-0	SLO-2	Overview of CAST-128	Diffie Hellman key exchange	Examples	SSL -TLS - SET	Introduction to Firewall
S-9		Characteristics of advanced symmetric Block ciphers	Elliptic curve cryptography	Basics of proof	Port Scanning	Firewall-Types, configurations
2-9	SID	Characteristics of advanced symmetric Block ciphers	Elliptic curve cryptography	Proof of DSS Message Authentication Codes.	Port Knocking	Trusted System
Learn Resou	•	<ol> <li>William Stallings, Cryptography &amp; Net</li> <li>Bruce Schneier, Applied Cryptograph</li> <li>Eric Maiwald,Fundamentals of Network</li> </ol>	/, 2 nd ed., 2015	tography and Network Security, 2 nd ed., hy, Cengage Learning, 2010		

Learning Ass	sessment										
	Dia ami'a				Final Evenination	(EOO) waishtasa)					
	Bloom's Level of Thinking	CLA –	1 (10%)	CLA – 2 (15%)		CLA –	3 (15%)	CLA – 4	(10%)#	Final Examination	n (50% weightage)
	Level of Thinking	Theory	Theory Practice Theory Practice Theory Practice Theory Practice							Theory	Practice
Level 1	Remember Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total		)%	10	0%	10	0%	100	0%	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Dr. P. Malarvezhi, SRM IST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	

Course Code	18ECE321T	Course Name	RF AND MICROWAVE SEMIC	CONDUCTOR DEVICES	Course Category	Е	Professional Elective	L 3	T 0	P 0	C 3
Pre-requisit Courses	e 18ECC102J		Co-requisite Courses		Progre Cou	essive rses	Nil				
Course Offeri	ng Department	Electror	nics and Communication Engineering	Data Book / Codes/Standards	Nil						

Course L	earning Rationale (CLR):	The purpose of learning this course is to:	L	earni	ng					Prog	ram L	earni	ng O	utcon	nes (F	PLO)			
CLR-1 :	Study microwave semicono microwave signal	luctor materials and to understand the fundamental of electronic components under	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12 1	3 14	1 15
CLR-2 :												y						ent	ch
CLR-3 :									arch			abilit						gem	Research
CLR-4 :	LR-4: Know the fundamentals of RF power transistors and challenges				ıt (%)	dge		ent	Rese			Sustainability		Work		ge	-	Manager	Re
CLR-5 :	CLR-5 : Discuss the main issues and challenges encountered in developing the products at microwave frequencies				nen	ovle	s	mdo	ı, Re	age	е	Sust		2		Finance	sional	tMa	e &
CLR-6 :					Attainment	Хno	Analysis	Development	Design, I	Us	Culture	~ŏ		Team	io	& F	earning ofession	t oject	nalyze
			Thinking	d Proficiency	4 Att	ring	Ana	& De	, De	Tool Usage	& Cl	nen		8	lical	Agt.	g Learn Profess	- Pr	.An
Course L	earning Outcomes (CLO):	At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering Knowledge	Problem	Design 8	Analysis,	Modem .	Society 8	Environment	Ethics	Individual &	Communication	Project Mgt. &	Life Lonç PSO-1:	Achiever PSO - 2	Techniqu PSO – 3
CLO-1 :	Understand the properties	of Semiconductor Junction Diodes under microwave signals	3	80	75	Н	-	-	Н	-	1	-	-	-	-	-	-   F	1 -	-
CLO-2 :	CLO-2 : Analyze the development of negative resistance characteristics in tunnel diode and transit time devices			80	70	Н	-	-	Μ	-	1	-	-	-	-	-	- H	1 -	-
CLO-3 :				75	70	Н	-	-	Н	-	1	-	-	-	-	-	- H	1 -	Н
CLO-4 :	Compare the characteristic	cs of RF power transistors	3	80	75	Н	-	-	М	-	-	-	-	-	-	-	- /	1 -	-
CLO-5 :				80	70	Н	-	Н	-	-	1	-	-	-	-	-	- H	1 -	М
CLO-6 :	0-6: Understand the concepts of RF and semiconductor devices and apply in the design of electronic systems.			80	70	Н	Н	-	-	-	-	-	-	-	-	-	ŀ	1 -	Н

		Semiconductor P-N Junction	Negative Resistance and Transit Time Devices	Microwave BJT Transistors	HEMT Transistors and RF Power Transistor	RF Package Design and Development
Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	Review of properties of semiconductors	Negative Resistance Devices	Microwave Transistor	Introduction to HEMT	Introduction to RF Package
5-1	SLO-2	Review of properties of semiconductors	Negative Resistance Devices	High frequency limitations of BJT	Short channel effects	Introduction to RF Package
S-2	SLO-1	Transient and ac behavior of p-n junctions	Tunnel Diode, Tunneling process in p-n junction	Microwave bipolar transistors – introduction	Device operation	Thermal Management
0-2	SLO-2	Transient and ac behavior of p-n junctions	V-I characteristics and device performance	Microwave bipolar transistors – operation	Device operation	Thermal Management
S-3	SLO-1	Effect of doping profile on the capacitance of p-n junctions	MIS tunnel diodes	Hetero junction bipolar transistors	Device design	Mechanical Design
3-3	SLO-2	Effect of doping profile on the capacitance of p-n junctions	V-I characteristics and device performance	Basic principle of operation	Scaling issues	Mechanical Design
S-4	SLO-1	Noise in p-n junctions	Backward Diode	Kirk effect	Material Systems for HEMT Devices	Package electrical and electromagnetic Modeling
3-4	SLO-2	Noise in p-n junctions	V-I Characteristics	High frequency response	GaAs HEMT	Package electrical and electromagnetic Modeling
0.5	SLO-1	Varactor diode	Transferred Electron Devices	MESFET	InP HEMT	Design verification
S-5	SLO-2	Construction and Operation of Varactor Diode	Impact ionization	Principle of operation	Technology comparisons	Design verification

S-6	SLO-1	Applications of Varactor Diode	IMPATT	Properties of semiconductor materials used in MESFET	Technology comparisons	Materials testing
0-0	SLO-2	Schottky effect	Small-signal analysis of IMPATT diodes	MESFET Technology	Introduction of RF power transistor	Reliability testing
0.7	SLO-1	Schottky barrier diode	TRAPATT, BARITT Diodes	MESFET Modeling	Figure of Merit for RF Power Transistor	computer integrated Manufacturing
S-7	SLO-2	Applications of Schottky Diode	Two-valley model of compound semiconductors	I-V Characteristics	Common RF power devices	computer integrated Manufacturing
<b>C</b> 0	SLO-1	Hetero junctions	vd-E characteristics	High frequency performance	Material properties	Thermal modeling
S-8	SLO-2	Hetero junctions	Gunn Effect, modes of operation		State-of-the-art-wide bandgap microwave transistor data	Thermal analysis of resistance networks
S-9	SLO-1	Construction and operation of microwave PIN diode	small-signal analysis of Gunn diode	Operating characteristics of MISFET	Challenges to production	Introduction to computer aided design
3-9	SLO-2	Applications	Power-frequency limit.	Operating characteristics of MISFET	Challenges to production	Benefits, limitations and applications of CAD

Learning 1. Golio, M., "RF and Microwave Semiconductor Devices Handbook", CRC Press (2002). Resources 2 Sze, S.M., and Ng, K.K., "Physics of Semiconductor Devices", 3rd Ed., Wiley-Interscience (2006). 3. Glover, I.A., Pennoek, S.R. and Shepherd P.R., "Microwave Devices, Circuits and Sub-Systems", 4th Ed., John Wiley & Sons (2005)

4. Liao, S.Y., "Microwave Devices and Circuits", 4th Ed., Pearson Education (2002).

Learning Asses	ssment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weigl	htage)			Final Examination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA – S	3 (15%)	CLA – 4	(10%)#		r (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	10	0 %	100	0 %	100	0 %	100	0 %	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Mr. E. Siva Kumar, SRM IST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	

Course Code	18ECE240T	Course Name	WAVELETS AND SIGN	IAL PROCESSING	Course Category	E	Professional Elective	L 3	T 0	P 0	C 3
Pre-requisi Courses	ite 18ECC104T		Co-requisite Courses		Progre Cour		18ECE341T				
Course Offer	ring Department	Electronics and Con	nmunication Engineering	Data Book / Codes/Standards	Nil						

Course Learning Rationale (CLR): The purpose of learning this course is to:	L	earni	ng	Program Learning Outcomes (PLO)														
CLR-1: Learn about multiresolution analysis and wavelet signal processing	1	2	3	-	1	2	3	4	5	6	7	8	9	10	11	12	13	14 15
CLR-2: Identify the families of wavelets required to apply the transformation to various real time applications											×						1	ch en
CLR-3: Study the of discrete systems that employs wavelet transformation	Ê		()					arch			abilit						1	Research
CLR-4: Study various filter banks of discrete systems used in wavelet transformation	(Bloom)	y (%)	t (%)		dge		ent	Research			aina		Work		ge		_	Rei
CLR-5: Analyze various real time applications that employs filter banks	g(B	Proficiency (	Attainment		ave	s	Development	Ř	age	Ð	Sustainability		2		Finance	Ð.	essional	roject Management i nalvze & Research
CLR-6: Acquire knowledge about wavelet transforms, types and applications of multiresolution analysis	Thinking	ofici	lain		Ř	Analysis	velo	Design,	l Us	Culture	~ŏ		Team	ion	∞ŏ	arning	t	roject N S nalyze
	Thic	L P			ing	Ana	& De	Ë	Tool Usage	ہ ت	nen		8	lical	Agt.	Le	Line Line	ר <u>89</u> א
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of .	Expected	Expected		Engineering Knowledge	Problem	Design 8	Analysis,	Modem -	Society 8	Environment	Ethics	Individual	Communication	Project Mgt.	Life Lonç	PSU-1: Achiever	PSO – 2: Techniqu PSO – 3:
CLO-1: Understand multi resolution analysis for discrete signals	3	80	75		Н	Н	-	-	-	-	-	-	-	-	-	-	Н	
CLO-2: Know the families of wavelets	3	80	70		Н	-	М	-	-	-	-	-	-	-	-	-	-	- M
CLO-3: Identify Discrete wavelet transform	3	75	70		М	М	М	-	-	-	-	-	-	-	-	-	-	
CLO-4 : Analyze and design filter banks	3	80	75		Н	-	М	-	-	-	-	-	-	-	-	-	-	
CLO-5 : Utilize wavelet transformations on various applications	3	80	70		Н	-	М	L	-	-	-	-	-	-	-	-	-	ΜH
CLO-6 : Know about wavelet transforms, types and applications of multiresolution analysis	3	80	70		М	Н	1	-	-	-	-	-	-	-	-	-	-	

		Multiresolution Analysis (MRA)	Families of wavelets	Discrete Wavelet Transform (DWT)	Filter banks	Applications
Durat	ion (hour)	9	9	9	9	9
S-1	SLO-1	Introduction to multiresolution/ multiscale analysis	Orthogonal	Discretization in steps	Introduction to Variants of the wavelet transform	Transient analysis
3-1	SLO-2	Introduction to multiresolution/ multiscale analysis	Orthogonal	Discretization in steps	Introduction to Variants of the wavelet transform	Transient analysis
S-2	SLO-1	Time-frequency analysis and wavelets	Biorthogonal wavelets	Discretization of scale	Implementational structures	Singularity detection
5-2	SLO-2	Time-frequency analysis and wavelets	Biorthogonal wavelets	Discretization of scale	Implementational structures	Singularity detection
S-3	SLO-1	Piecewise constant approximation	Daubechies' family of wavelets	Generalized filter bank	The wavepacket transform	Biomedical signal processing applications
5-3	SLO-2	Piecewise constant approximation	Daubechies' family of wavelets	Generalized filter bank	The wavepacket transform	Biomedical signal processing applications
•	SLO-1	Haar wavelet	Daubechies' family of wavelets	Discretization of translation	Computational efficiency in realizing filter banks	Efficient signal design and realization
S-4	SLO-2	Haar wavelet	Conjugate Quadrature Filter Banks (CQF) and their design	Discretization of translation	Computational efficiency in realizing filter banks	Efficient signal design and realization
с <b>г</b>	SLO-1	Building up the concept of dyadic Multiresolution Analysis (MRA)	Conjugate Quadrature Filter Banks (CQF) and their design	Generalized output sampling	Computational efficiency in realizing filter banks	Wavelet based modulation and demodulation
S-5	SLO-2	Building up the concept of dyadic Multiresolution Analysis (MRA)	Conjugate Quadrature Filter Banks (CQF) and their design	Generalized output sampling	Polyphase components	Wavelet based modulation and demodulation
S-6	SLO-1	Relating dyadic MRA to filter banks	Data compression	Discretization of time/ space (independent variable)	Polyphase components	Applications in mathematical approximation

	SLO-2	Relating dyadic MRA to filter banks	Data compression	Discretization of time/ space (independent variable)	Polynnase components	Applications in mathematical approximation
S-7	SLO-1	A review of discrete signal processing	Fingerprint compression standards	Going from piecewise linear to piecewise polynomial	The lattice structure	Applications to the solution of some differential equations.
3-7	SLO-2	A review of discrete signal processing	Fingerprint compression standards	Going from piecewise linear to piecewise polynomial	The lattice structure	Applications to the solution of some differential equations.
S-8	SLO-1	Elements of multirate systems	JPEG-2000 standards	The class of spline wavelets	Solving Problems	Solving Problems
5-0	SLO-2	Elements of multirate systems	JPEG-2000 standards	The class of spline wavelets	Solving Problems	Solving Problems
S-9	SLO-1	Two-band filter bank design for dyadic wavelets.	Solving problems	A case for infinite impulse response (IIR) filter banks	The lifting scheme.	Solving Problems
3-9	SLO-2	Two-band filter bank design for dyadic wavelets.	Solving problems	A case for infinite impulse response (IIR) filter banks	The lifting scheme.	Solving Problems

Learning
Resources

 M. Vetterli, J. Kovacevic, Wavelets and Subband Coding, Prentice Hall, 1995
 S. Mallat, A Wavelet Tour of Signal Processing, 2nd ed., Academic Press, 1999
 P.P. Vaidyanathan, Multirate Systems and Filter Banks, Pearson Education, 1993
 C.S.Burrus, Ramesh A. Gopinath, and Haitao Guo, Introduction to Wavelets and Wavelet Transforms: A Primer, Prentice Hall, 1997

- Gilbert Strang, Truong Nguyen, Wavelets and Filter Banks, 2nd ed., Wellesley-Cambridge Press, 1998.
   Ingrid Daubechies, Ten Lectures on Wavelets, SIAM, 1992
- Howard L. Resnikoff, Raymond O. Wells, "Wavelet Analysis: The Scalable Structure of Information", Springer, 1998

Learning Ass	essment												
-	Bloom's		Continuous Learning Assessment (50% weightage)										
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA-4	(10%)#		n (50% weightage)		
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	30 %		30 %		30 %		30 %		30%			
Level	Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-		
Level 2	Apply	40 %		40 %		40 %		40 %	_	40%			
Leverz	Analyze	40 /0	-	40 /0	-	40 %	-	40 //	-	4076	-		
Level 3	Evaluate	30 %		30 %		30 %		30 %		30%			
Levers	Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-		
	Total	100	0 %	10	0%	10	0 %	10	0%	100 %			

Course Designers												
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts										
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Dr. Sabitha Gauni, SRM IST										
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in											

Course Code	18ECE241J	Course Name	SIGNAL PROCESS	SING FOR AUDITORY SYSTEMS	Course Category	Е	Professional Elective	L 2	T 0	P 2	C 3
Pre-requisite Courses	18ECC104T		Co-requisite Courses	Nil	Progre Cour		18ECE343T				
Course Offering	Department	Electror	nics and Communication Enginee	ring Data Book / Codes/Standards	Nil						

Course L	earning Rationale (CLR): The purpose of learning this course is to:	Lea							Prog	ram L	earni	ing O	utcon	nes (F	PLO)	-		
CLR-1 :	Learn basics of signal processing	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14 15
CLR-2 :	Know Feature Extraction technique used in Speech Processing										У						+00	ch en
CLR-3 :	Identify Frequency characteristics of Speech signal	Ê		-				arch			abilit						5	eal
CLR-4 :	Construct the Digital model of speech signal	(Bloom)	(%) <i>k</i>	t (%)	dge		ant	se			ustainability		Work		9	_	_ 2	e & Rese
CLR-5 :	Identify the Ethical issues of elements of music	(B)	ency	Attainment	wle	s	Development	, Re	Usage	Ð	Sust		× ۲		Finance	p g	ssional	e &
CLR-6 :	Learn the basic of speech signal processing and its model	Thinking	roficie	ain	Kno K	Analysis	velo	Design,	Usi	Culture	8		Team	<u>io</u>	∞ŏ	Learning	t t	er uject n es Analyze
		Thin	d Pu		ing	Ana	De	De	Tool	& CL	nment		~~	licat	Mgt.	J Le	ment	
Course Lo	earning Outcomes (CLO): At the end of this course, learners will be able to:	Level of .	Expected	Expected	Engineering Knowledge	Problem	Design &	Analysis,	Modem -	Society 8	Environn	Ethics	Individual &	Communication	Project N	Life Long	Achiever	Techniqui PSO – 3:
CLO-1 :	Appreciate the functioning of the human vocal and auditory systems	3	80	75	Н	-	Н	-	Н	-	-	-	-	-	-	-	М	- H
CLO-2 :	Analyze the function of feature extraction in speech and audio signal processing using Time Domain Characteristics	3	80	70	Н	-	Н	-	-	М	-	М	-	-	-	-	М	- H
CLO-3 :	LO-3: Explore the frequency characteristics of speech signal					-	Н	Н	-	-	-	-	-	-	-	-	М	- H
	LO-4: Apply appropriate Digital models for speech signal					-	-	-	Н	-	-	-	-	-	-	-	Н	M M
CLO-5 :	D-5: Analyze the elements of music				-	-	-	М	-	-	-	-	-	-	-	-	М	- H
CLO-6 :	Know about speech signal processing and its model	3	80	70	Н	-	Н	-	Н	-	-	-	-	-	-	-	Н	- M

		Basic Audio Processing using MATLAB Speech Signal Analysis in Time Dom		Speech Signal Analysis in Frequency Domain	Digital Models for Speech Signal	Time Elements in Music
Durat	ion (hour)	12	12	12	12	12
S-1	SLO-1	Introduction to Digital audio	Speech signal analysis	Short Time Fourier analysis	Introduction to Acoustic Phonetics	Sound vibrations – pure tones and perception of pitch
3-1	SLO-2	Capturing and converting sound	Segmental analysis	Filter bank analysis	Introduction to Acoustic Phonetics	Sound vibrations – pure tones and perception of pitch
S-2	SLO-1	Sampling of sound wave	Sub-segmental	Formant extraction	Acoustic theory of speech production:- Sound propagation	Auditory coding in the nervous system
3-2	SLO-2	Handling audio in MATLAB	Supra segmental levels	Pitch Extraction	Acoustic theory of speech production:- Sound propagation	Auditory coding in the nervous system
S 3-4	SLO-2	Lab 1: Read & write a speech signal, Record a speech signal, playback, convert into a wave file, plot the speech signal, and spectrogram plot.		Lab 7: Estimation of pitch period using simplified inverse filter tracking (SIFT) algorithm	Lab 10: Phoneme-level segmentation of speech	Lab 13:Feature Extraction of speech signal
S-5	SLO-1	Normalization	Time domain parameters of speech signal	Homomorphic speech analysis	Vocal tract transfer function of vowels	Subjective pitch and role of nervous system
3-0	SLO-2	Audio processing	Time domain parameters of speech signal	Homomorphic speech analysis	Vocal tract transfer function of vowels	Subjective pitch and role of nervous system
S-6	SLO-1	Segmentation	Methods for extracting the parameters Energy	Formant and Pitch Estimation	Effect of nasal coupling	Acoustical energy –perception of loudness, pitch, timbre
3-0	SLO-2	-2 Analysis of window sizing Methods for extracting the parameters Average Magnitude Formant and Pitch Estimation Excitation of sound in vocal tract		Excitation of sound in vocal tract	Pitch contour Musical Structure	
S 7-8		Lab 2: Convert into a wave file, plot the speech signal, and spectrogram plot	Lab 5: Short-time Fourier transform magnitude spectrum	Lab 8: Estimation of pitch period using harmonic product spectrum	Lab 11: Estimation of sound in vocal tract	Lab 14: Speech production mechanism

S-9	SLO-1	Visualization	Zero crossing Rate	Linear Predictive analysis of speech	Vocal tract transfer function of vowels	Detecting beats, rhythm, meter
3-9	SLO-2	Sound generation	Zero crossing Rate	Linear Predictive analysis of speech	Vocal tract transfer function of vowels	Recognizing pitch – melody
6 40	SLO-1	Speech production mechanism	0	Autocorrelation method, Covariance method	Effect of nasal coupling	Auditory streaming
S-10	SLO-2	Speech production mechanism	Silence Discrimination using ZCR and energy	Solution of LPC equations	Excitation of sound in vocal tract	Tonality and context – algorithms
s	SLO-1	Lab 3: Cepstrum smoothed magnitude		Lab 9: Pitch and duration modification using time-domain pitch synchronous	Lab 12: Sound vibrations	Lab 15:Study of Feature extraction and
11-12	SLO-2	spectrum	(ii) Estimation of formant frequencies using linear prediction	overlap and add (TD-PSOLA) method	Lab 12. Sound Vibrations	SVM classifier
Learni Resou	•	Press, 2009	Audio processing, with MATLAB examples, 1 Wiley, Speech and Audio Signal Processing: Viley & Sons, 2011	1993 Processing and Perception 4. Ken Pol	ce Rabiner,B.H.Juang, Fundamentals of Sp hlmann, Principles of Digital Audio, 6 th ed., I an, Speech and Audio Signal Processing, F	McGraw-Hill, 2007

Learning Assess	ment													
	Bloom's		Continuous Learning Assessment (50% weightage)											
	Level of Thinking	CLA –	1 (10%)	CLA – 2	2 (15%)	CLA – 3	3 (15%)	CLA – 4	(10%)#		n (50% weightage)			
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%			
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%			
1	Evaluate	4.00/	400/	450/	450/	450/	4.50/	450/	450/	450/	450/			
Level 3	Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%			
	Total	<u>100 %</u> 100 % 100 % 100 %			0%	100 %								

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Mrs. K. HariSudha, SRM IST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	

Course Code	18ECE242J     Course Name     PATTERN RECOGNITION AND NEURAL NETWORKS     Course Category     E     Professional Elective					L 2	T 0	P 2	C 3													
Pre-requisite Courses     Nil     Co-requisite Courses     Nil     Progressive Courses     18ECE3407       Course Offering Department     Electronics and Communication Engineering     Data Book / Codes/Standards     Nil																						
Course Le	arning Rationale (CLI			Le	earnir	ıg					Progr	am L	earnir	ng Out	come	s (PLO	)					
CLR-1 :	Learn the concepts of	pattern recog	nition			1	2	3	1	2	3	4	5	6	7	8	9 10	) 11	12	13	14	15
CLR-3 : CLR-4 : CLR-5 : CLR-6 :	Acquire knowledge on Apply the neural netwo Utilize the practical app Understand the pattern applications	the fundame rk recurrence plications of r and apply n	e for pattern recognition studies neural networks in pattern recognition eural network based learning algorithm			l of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Enaineerina Knowledae	Problem Analysis	gn & Development	Analysis, Design, Research	Modern Tool Usage	ety & Culture	Environment & Sustainability		Individual & Team Work	Project Mgt. & Finance	Life Long Learning	-1: F	>SO – 2: Project Management Fechniques	- 3: Analyze & Research
Course Le	•	•	end of this course, learners will be able			Level		Expe	Enai	Prob	Design		Mod	Society a	Envi	Ethics	Com	Proje	Life	PSO-	PSO Tech	PSO
CLO-1 :			ition of patterns, regularities in data and			3	80	75	L	-	L	Н	М	-	-	-		-	-	-	-	-
	CLO-2: Classify error estimation, such as definitions, test-set error estimation and training-set error estimation					3	80	70	М	-	-	Н	-	-	-	-		-	-	-	-	Н
CLO-3 : Analyze the neuron model and fundamentals on learning algorithms					3	75	70	М	-	-	-	-	-	-	-		-	-	-	-	-	
CLO-4 : Realize the error model and calculate the deviation with back propagation networks			3	80	75	М	-	М	Н	-	-	-	-		-	-	М	-	Н			
CLO-5 :	CLO-5 : Identify the applications of neural networks in the area of pattern recognition			3	80	70	L	-	М	Н	-	-	-	-		-	-	-	-	Н		
(.) () ₋ h '	CLO-6 : Analyze and compare a variety of pattern classification techniques to real-world problems such as document analysis recognition.		s and	3	80	70	М	-	М	Н	М	-	-	-	-   -	-	-	L	-	Н		

		Introduction To Pattern Recognition	Parameter Estimation Methods	Introduction to Neural Networks	ANN for Classification and Regression	ANN for Organization and Recognition
Durati	on (hour)	12	12	12	12	12
S-1	SLO-1	Introduction to Statistical Pattern Recognition	Introduction to parameter estimation	Introduction to neural networks	Introduction to Hopfield networks	Self-organizing map
5-1	SLO-2	Overview of Pattern Classifiers	Maximum-Likelihood estimation	Neuron model	Hop-field network- architecture	SOM algorithm
S-2	510-1	Process of Classifier Design, Decision making theory	Maximum a Posteriori estimation	Learning methods of ANN, Supervised, Unsupervised and reinforced	Recurrent networks	Learning vector quantization
0-2	SLO-2	Bayesian decision making	Bayesian estimation	Basic learning rules of ANN-	Sample recurrent network structure	Kohonen self-organizing map
S 3-4	SLO-1 SLO-2	Lab1: Digitization of analog signals	Lab4: Programs on Estimation	Lab 7: Logic gate function description with Hebb rule	Lab 10: Programs on training a Hopfield network	Lab 13: programs on orthogonality and evaluating input and output for association
	SLO-1	Bayes Classifier	Unsupervised learning and clustering	McCulloh pitt neuron	Associative memories- Introduction:	Feature selection
S-5	SLO-2	Bayes Classifier for minimizing Risk	Clustering vs. Classification-Supervised vs. unsupervised	Problems on McCulloh pitt	Auto and hetero associative memory	Feature map classifier, applications
S-6	SLO-1	Estimating Bayes Error	Criterion functions for clustering Algorithms for clustering	Hebb learning rule	Bi directional memories	Architecture of Adaptive Resonance Theory
3-0	SLO-2	Effect of sample size in estimation	K-Means clustering	Problems on Hebb learning rule	XOR problem	ATR1 algorithm
S 7-8		Lab 2: Program to count the white pixels from the image	Lab 5: Loading a data set and selecting predictive features	Lab 8: Evaluating function with different learning rules	Lab 11: Programs on Auto and hetero association of memory	Lab 14: Character Recognition
S-9	SLO-1	Minimax Classifiers	Hierarchical methods of clustering	Single layer perceptron architecture Training algorithm	Back-propagation Algorithm	ART2 algorithm - Training

	SLO-2	Neymann Classifiers	Comparison of methods, cluster distance and validation		Counter propagation networks- architecture	ART2- network architecture
S-10		Pearson Classifiers	Sequential Pattern Recognition	Adaline architecture	Simulated annealing	Hand written digit recognition
3-10		Applications	Sequential Pattern Recognition	Madaline architecture	Boltzmann machine	Character recognition networks
S 11-12	SLO-1 SLO-2	Lab3: Analysis of a data set with classifiers	Lab 6: Programs on clustering technique	Lab 9 : XOR problem with Perceptron network	Lab 12: Evaluation of error in BPN	Lab 15: Mini Project

Learning Resources	2.	Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer Verlag, 2016 Dionisis Cavouras, S. Theodoridis, K. Koutroumbas, A. Pikrakis, An Introduction to Pattern Classification: A Matlab Approach, Elsevier Science Publishing Co Inc, 2010	5.	Simon O. Haykin, Neural Network and Learning Machines, 3 rd ed., Pearson Education, 2009 Ke-Lin Du ,M. N. S. Swamy, Neural Networks and Statistical Learning, Publisher Springer, 2014 Kosko B, Neural Networks and Fuzzy Systems: A dynamical system approach to machine intelligence,
	З.	Martin T.Hagan, Neural network design, Cengage publications, 2010		Prentice Hall, 2009

Learning Ass	essment												
	Bloom's		Continuous Learning Assessment (50% weightage)										
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA – S	3 (15%)	CLA – 4	4 (10%)#		n (50% weightage)		
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Lovel 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%		
Level 1	Understand	20%	2070	1370	1370	1370	1370	1370	1570	1370	1570		
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
Leverz	Analyze	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070		
Laural 2	Evaluate	100/	100/	150/	150/	150/	150/	150/	15%	1 50/	1 50/		
Level 3	Create	10%	10%	15%	15%	15%	15%	15%	10%	15%	15%		
	Total	10	0 %	100	) %	100	) %	10	0 %	10	0 %		

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Dr. A. Ruhan Bevi, SRM IST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	

Course Code	18ECE260J	Course Name	BIOMEDICAL INSTRU	MENTATION	Course Category	Е	Professional Elective	L 2	T 0	P 2	C 3
Pre-requis Courses	18FCC201.1		Co-requisite Courses		Progre		Nil				
Course Offer	ring Department	Electron	ics and Communication Engineering	Data Book / Codes/Standards	Nil						

Course L	earning Rationale (CLR): The purpose of learning this course is to:	L	earni	ng	Program Learning Outcomes (PLO)															
CLR-1 :	Measure and interpret various physiological parameters	1	2	3	1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2 :	Utilize the working of different monitoring equipment's				1							N.								
CLR-3 :	Utilize the principle and working of different equipment's available for hemodynamic measurements	Ê							arch			abilit								
CLR-4 :	Utilize the principle and working of different types of pulmonary function analyzers	(Bloom)	y (%)	it (%)		dge		ent	ese			Sustainability		Work		JCe				
CLR-5 :	Utilize the principle and working of clinical laboratory equipment's	g (B	Proficiency	Attainment		owle	s	Development	n, Re	age	e	Sust		2 2		inar	b			
CLR-6 :	The learner gains knowledge in application of various diagnostic medical devices and issues related to device safety	hinking	ofici	tain		Knc	Analysis	sveld	Design, I	١Us	Culture	∞ŏ		Team	tion	& ₽	earning			
		Thir				ring	Aná	& De	, De	Tool	& C	nen		۰ð	ica	Mgt.				
Course L	earning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected		Engineering Knowledge	Problem	Design 8	Analysis,	Modern	Society &	Environment	Ethics	Individual	Communication	Project N	Life Long	PSO - 1	PSO - 2	PSO - 3
CLO-1 :	Describe the origin of bio potential and its measurements using different type of electrodes	3	80	75	1	М	-	-	-	-	-	-	-	-	-	-	-	М	-	-
CLO-2 :	Illustrate working principle of cardiac function monitors and devices used for measurement of parameters such as blood	3	80	70		М	1	-	-	-	-	-	-	-	-	-	-	м	-	-
010-2.	pressure, blood flow, heart rate, cardiac output and blood oxygen content	5	00	10		IVI												IVI		
CLO-3 :	Analyze the components and working principle of pulmonary function measuring devices and patient monitoring systems	3	75	70		М	-	-	-	-	-	-	-	-	-	-	-	М	-	-
CLO-4 :	Interpret the working principle of different clinical laboratory equipment	3	80	75		М	-	-	-	-	-	-	-	-	-	-	-	М	-	-
CLO-5 :	Predict various electrical hazards and implement safety methods while using biomedical equipment	3	80	70		-	М	-	-	-	-	-	-	-	-	-	-	М	-	-
CLO-6 :	Summarize the working principles of different diagnostic instruments available for measuring the physiological variables	3	80	70		М	М	-	-	-	-	-	-	-	-	-	-	М	-	-

		Biopotential Electrodes	Bio Signals Recording	Cardiac Function Measurements	Pulmonary Function Measurements and Patient Monitoring System	Bioanalytical Equipments and Patient Safety
Durati	ion (hour)	12	12	12	12	12
	SLO-1	Cell structure and its functions, Physiological systems of the body	Electrical conduction system of the heart, Cardiac cycle	Haemodynamic pressure, Measurement of blood pressure: direct methods	Mechanism of respiration	Types of blood cells
S-1	SLO-2	Cardiovascular system Respiratory system, Nervous system	thoven triangle Lead configurations method, Ultrasonic method for blood Respiratory volumes and capaciti pressure measurement		Pulmonary function measurements, Respiratory volumes and capacities	Calculation of cell size
6.2	SLO-1	Basic Medical Instrumentation system, Sources of Biomedical Signals	Electrocardiograph, 12 lead ECG machine block diagram,	Blood flow measurement: Electromagnetic blood flow meters, Sine and square wave blood flowmeter	Spirometry: Basic spirometer, wedge	Blood cell counters –Microscopic method, Automatic optical method
S-2	SLO-2	Resting and Action potential, Nernst equation, Goldman equation, Hodgkin- Huxley model	Common mode and interference reduction circuits	Ultrasonic blood flow meter: Doppler shift principle, Pulsed Doppler blood flowmeter	Pneumotachometers: turbine type Pneumotachometer, Fleisch-type & Venturi type Pneumotachometers	Electrical conductivity based method, Coulter counter, Automatic recognition
S 3-4	SLO-1 SLO-2	Lab1: Language of Anatomy, Overview of organ system	Lab4: Recording and analysis of ECG signal	Lab7: Recording and analysis of heart sounds	Lab10: Pulmonary function measurement and analysis using spirometer	Lab13: Mini project
S-5	SLO-1	Recording Electrodes: Electrode tissue interface, Metal electrolyte interface	Cardiac arrhythmias	NMR blood flow meter	Measurement of gas volume: Flow-Volume curve, Area of the flow volume, Nitrogen wash out technique	Differential counting of cells, Spectrophotometer Colorimeters
	SLO-2	Electrolyte skin interface	Characteristics and origin of heart sound, Phonocardiography	Laser Doppler blood flowmeter	Electro spirometer	Flame photometers, Selective ion electrodes, ion analyser
S-6	SLO-1	Polarization: polarizable and non- polarizable electrodes, Skin contact	EEG : origin, waveforms and their characteristics, 10-20 electrode placement	Cardiac output measuring techniques: dye dilution method, Indicator dilution, thermal	Pulmonary function analyzers	Patient safety: Electric shock hazards

		impedance	system	dilution method		
	SLO-2	Surface Electrodes: Silver-Silver chloride electrodes, Floating and pre-gelled electrodes , Pasteless electrodes	Block diagram and working of EEG	Measurement of cardiac output from aortic pressure waveform	IMDedance Dheumooradhy	Gross shock and effects of electric current on human body
S	SLO-1		Lab5: Recording and analysis of FEG	Lab8: Measurement of blood pressure	Lab11: Measurement of Heartrate using	
7-8	SLO-2	Lab2: Study of different types of electrodes	signal	using Sphygmomanometer/LabVIEW Biomedical workbench	LabVIEW Biomedical workbench	Lab14: Mini project
	SLO-1	Air jet electrodes, Micro Electrodes	Other Biomedical recorders: Vectorcardiograph		Respiratory gas analyzers: Infrared gas analyser, Paramagnetic oxygen analyser	Micro current shock
S-9	SLO-2	Needle Electrodes, lon sensitive field effect transistors, Transcutaneous electrodes	Apexcardiograph	Ultrasound method and CO2 rebreathing method	Thermal conductivity analyser, nitrogen gas analyser, Polarographic oxygen analyser	Ventricular fibrillation- electrophysiology
	SLO-1		Recording and analysis of EMG signal, Biofeedback Instrumentation	Oximeters- Invitro, Invivo oximetry and types of oximeters	Heart rate measurement, Monitoring of foetal heart rate	Leakage current and its types
S-10	SLO-2		Measurement of BSR, Measurement of GSR	SVSTOM	Measurement of respiration rate: displacement method, thermistor method, CO2 method, Apnoea detector	Precautions and safety codes, Electrical safety analyser
S 11-12	SLO-1 SLO-2	1 an.s. Design of bio ambiliter	ab3: Design of bio amplifier Lab6: Recording and analysis of EMG Lab9: Recording and analysis of signal Lab9: Recording and analysis of signals		Lab12: Mini project	Lab15: Model Practical Exam

2. John G. Webster, Medical Instrumentation application and design, 4th ed., Wiley, 2015

Learning Asses	Learning Assessment												
	Bloom's			Final Examination (50% weightage									
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	l (10%)#		i (50% weigi itage)		
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%		
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%		
	Total 100 % 100 % 100 %							100 %					

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Sathyanarayanan J, Mindray Medical India Pvt Ltd, sathyanarayananjayagopal@mindray.com	1. Dr. S. Poonguzhali, Anna University, poongs@annauniv.edu	1. Dr. A. K. Jayanthy, SRMIST
2. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	2. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	2. Dr. T. Jayanthi, SRMIST

Course Code	18ECE261T	Course Name		MEDICAL	IMAGING TECHNIQUES	-	ourse tegory	,	Е		Professional Elective							C 3						
Pre-requ Course	es ^{/v//}			Co-requisite Courses	Nil		C	gress ourse		Nil														
Course Of	ering Department	Electro	nics and Comm	nunication Enginee	ering Data Book / Codes/Standa	ards	Nil																	
Course Le	arning Rationale (CLI	R): The pu	rpose of learning	g this course is to:			L	earni	ng	[				Prog	ram L	earni	ng Oı	utcon	nes (F	PLO)				
	Jtilize the physics beh						1	2	3		1 2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Jtilize the hardware ar												ь			Ł								
	Jtilize the properties a						Ê	(%	(%		æ		Ē			Sustainability		×						
	Jtilize the physics beh				onance imaging		Thinking (Bloom)	Proficiency (%)	Attainment (%)		edg	Development	Rese	Ð		stain		Work		Finance				
	Jtilize the principle be						) br	cien	me		is low	lop	Ъ,	Usage	e			Team	_	Fina	ing			
CLR-6 :	Jtilize the imaging tecl	nniques for v	arious applicatio	ons			inki	Profi	∖ttaii		ing Know	eve	Design,	٥U	Culture	nt &		& Te	atio	~ŏ	Learning			
Course Lea	arning Outcomes (CL	.O): At the	end of this cours	se, learners will be	e able to:		Level of Th	Expected F	Expected A		Engineering Knowledge Problem Analysis		Analysis, D	Modern Tool	Society & (	Environment &	Ethics	Individual 8	Communication	Project Mgt.	Life Long L	PSO - 1	PSO - 2	PSO - 3
CLO-1:	Analyze the physics be	ehind x ray in	naging and Com	puted tomography	/		3	80	75		М -	-	-	-	-	-	-	-	-	-	-	L	-	L
	llustrate the hardware						3	80	70		L -	-	-	I	-	-	-	-	-	-	-	L	-	L
	Describe the properties						3	75	70		L -	-	-	-	-	-	-	-	-	-	-	L	-	L
CLO-4 :	Analyze the physics be	ehind magnet	tic resonance an	nd techniques in re	esonance imaging		3	80	75		М -	-	-	-	-	-	-	-	-	-	-	L	-	L
CLO-5 :	dentify the principle be	ehind moderr	n imaging techni	ques			3	80	70		М -	-	-	-	-	-	-	-	-	-	-	L	-	L
CLO-6 :	Apply the imaging mod	lality for inter	pretation				3	80	70		М -	-	-	-	-	-	-	-	-	-	-	L	-	L

		X-ray and Computed Tomography	Nuclear Imaging	Ultrasound Imaging	Nuclear Magnetic Resonance Imaging	Modern optical imaging
Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	Production of x-ray – Basic principle and its block diagram	medical diagnosis	Diagnostic ultrasound	Principles of NMR imaging system	Spectroscopy – Introduction
3-1	SLO-2	Voltage Generators , Collimators and Grids , Automatic Exposure Control	Physics of radioactivity	Physics of ultrasound	Free induction decay	Types of light sources
S-2	SLO-1	Visualization of x rays – X ray film and processing, Fluorescent screen	Radiation detectors – Ionization chamber	Generation and detection of ultrasound	NMR signal – Spin echo	Optical filters – Types
3-2	SLO-2	Image intensifier	Scintillation detectors , Semiconductor detectors, Solid state detectors	frequency, active element diameter and focusing	T1 and T2 relaxation	Need for filters
S-3	SLO-1	Computed radiography - CR imaging	Pulse height analyser	Basic pulse echo apparatus	Pulse sequence	Monochromators - Prism
0-0	SLO-2	CR image manipulation	Uptake monitoring system	System description	Repetition time, Echo time	Grating monochromators
S-4	SLO-1	Digital radiography	Rectilinear scanner	A scan - Introduction	Spin Echo Contrast Weighting – T1 weighting	Optical fibers – Need
5-4	SLO-2	Flat panel detector	Radioisotope rectilinear scanner	Applications of A scan	T2 weighting , Spin proton density weighting	Various configurations using optical fibers
S-5	SLO-1	Mammography – Automatic exposure control	Gamma camera	M Mode principle	Localization MR signal -Magnetic field gradients	Polarizers – Introduction
3-5	SLO-2	Mammography equipment's	Multi crystal gamma camera	Block diagram of an echocardiograph circuit	Slice select gradients	Types of polarisers
S-6	SLO-1	CT – Principle of CT imaging	Emission computed tomography- Principle	B scanner - Introduction	Frequency encode gradient	Fractional Flow Reserve – procedure

	SLO-2	Beers law, Hounsfield unit	Principle of PET and SPECT scanner	Types of B scanner	Phase encoded gradient	Measurement , Interpretation of results , Advantages
	SLO-1	CT scan – Tomographic acquisition	SPECT system description	Multi element array scanners	2D image acquisition	Microwave imaging – Need
S-7	SLO-2	Generations of CT	Various detector configurations	Sequential array scanner and phased array scanner	Echo planar image acquisition	Applications of microwave imaging
S-8	510-1	Detectors – Scintillation crystal and Photomultiplier	PET system description	Modern Imaging systems – block diagram description	MRI scanner components	Optical coherence imaging – Introduction
5-0	6-8	Xenon , scintillarc	Gantry and detector modules	Frame grabbers , Digital scan converters	Artifacts	Types – Time domain and Fourier domain
S-9	SLO-1	Data acquisition and Image reconstruction	Dual modality imaging – SPECT/CT	Doppler ultrasound	Functional MRI	Thermal imaging in medicine
3-9	SLO-2	Filtered back projection and artifacts	PET / CT	Intravascular ultrasound techniques	MR spectroscopy	IR detectors , Block diagram of IR imaging
Learning			ical Instrumentation, 2 nd ed., Tata McGraw F h A. Pfeiffer, Biomedical Instrumentation and		Il Ritenour Medical imaging physics, 4th Fijimoto, Optical coherence tomography	ed., 2002 technology and applications, 1st ed., Springer,

Resources

Leslie Cromwell, Fred J.	Weibell, Erich A. Pfeiffer, Bio
Measurements, 2 nd ed.,	Prentice-Hall of India, 1997

WOITC 2008

Learning Asse	essment										
	Bloom's			Contir	nuous Learning Ass	essment (50% weig	htage)			Final Examination	n (50% weightage)
	Level of Thinking	CLA – 1	1 (10%)	CLA – 2	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#		i (50% weightage)
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	30 %		30 %		30 %		30 %		30%	
Level I	Understand	30 %	-	30 //	-	30 %	-	30 %	-	30%	-
Level 2	Apply	10 %		10 %		10 %		10 %		10%	
Level 2	Analyze	40 70	-	40 70	-	40 /0	-	40 70	-	4070	-
Level 3	Evaluate	20.0/		20.0/		20.0/		20.0/		200/	
Cr	Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	100	) %	100	) %	10	0 %	100	)%	100	0 %
3	Analyze Evaluate Create								- - )%	40% 30% 100	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Sathyanarayanan J, Mindray Medical India Pvt Ltd, sathyanarayananjayagopal@mindray.com	1. Dr. S. Poonguzhali, Anna University, poongs@annauniv.edu	1. Dr. S. P. Angeline Kirubha, SRMIST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	2. Dr. P. Vinupritha, SRMIST

Course Code	18ECE262T	Course Name	BIOMATERIALS AND ART	IFICIAL ORGANS	Course Category	Е	Professional Elective	L 3	T 0	P 0	C 3
Pre-requisi Courses Course Offer	INII	Electronics and Com	Co-requisite Courses munication Engineering	Data Book / Codes/Standards		essive rses	Nil				

Course Learning Rationale (CLR): The purpose of learning this course is to:	L	.earni	ng		Program Learning Outcomes (PLO)														
CLR-1: Identify the phenomena occurring between biomaterials and surrounding tissue in living organism	1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Acquire the skills on different classes of biomaterials with its degradation process.				1							y								
CLR-3: Identify the suitable biomaterials for cardiovascular and orthopedic applications.								Research			Sustainability								
CLR-4: Acquire skills to handle different biomaterials for dental, eye and ear applications		y (%)	it (%)		dge		ent	ese			aine		Work		lce				
CLR-5: Proficiency to have an insight on the regulatory approval procedure for artificial organs	(Bloom)	enc	nen		owle	s	mdc	, R	Usage	e	Sust		eam V		Finan	bu			
CLR-6: Acquire the skills on suitable burn dressings and skin substitutes	Thinking	Proficiency	Attainment		Kno	Analysis	Development	Design,	١Us	Culture	8		Tea	tion	<b>∞</b> ŏ	arni			
	Thir	P			ring	Ana	& De	, De	Tool	З м	nen		al &	jca	Mgt.	g Le			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected		Engineering Knowledge	Problem	Design 8	Analysis,	Modern	Society &	Environment	Ethics	Individual	Communication	Project N	Life Long	PSO - 1	PSO - 2	PSO - 3
CLO-1: Analyze biocompatibility and testing of biomaterials	3	80	75		М	-	-	-	-	-	-	-	-	-	-	-	L	-	-
CLO-2: Identify relations between structure and properties of various biomaterials		80	70	1	М	-	-	-	-	-	-	-	-	-	-	-	L	-	-
CLO-3 : Select materials with suitable properties in cardiovascular and orthopedic devices		75	70		Μ	-	-	I	-	-	-	-	-	-	-	-	-	-	L
CLO-4: Identify biomaterials in dental, vision and auditory devices		80	75		М	-	-	-	-	-	-	-	-	-	-	-	-	-	L
CLO-5 : Analyze materials for artificial skin and drug delivery applications		80	70		М	-	-	-	-	-	-	М	-	-	-	-	-	-	-
CLO-6: Analyze the regulatory process for different artificial organs comprising codes, reliability, and device testing		80	70		М	-	-	-	-	-	-	-	-	-	-	-	L	-	-

		Properties of biomaterials	Metals and ceramics	Biomaterials for cardiovascular and orthopedic applications	Biomaterials for eye, ear & dental applications	Biomaterials for artificial skin and drug delivery applications
Durati	ion (hour)	9	9	9	9	9
S-1	SLO-1	The nature of matter and materials		Substitute Heart Valves	Dental implants to support dental prosthesis	Burn Dressings and Skin Substitutes: Artificial skin, Soft tissue replacement
5	SLO-2	Mechanical properties of biomaterials	Stainless Steel, Titanium and Co-Cr alloys: Metallurgical and Chemical Considerations	Heart Valve Function and Dysfunction	Adhesives and Sealants to enhance bond strength and durability	Sutures and Alternatives to Suture
S-2	SLO-1	Physiochemical properties of biomaterials	Mechanical properties	Heart Valve Replacement and Repair	Ophthalmologic Applications: Overview of Eye Anatomy	Drug Delivery Systems: Principles, Origins, Evolution of Controlled Drug Delivery
3-2	SLO-2	Biomaterial characterization – Analytical instruments	Corrosion behavior	Mechanical and Tissue Valve Replacement Devices: Types and Complications	Contact Lenses -General Properties and Corneal Requirements	Liposomes, Polymeric micelles
S-3	SLO-1	Cells: Function and response to Injury	Applications of Stainless steel, titanium, Co-Cr alloys	Trans catheter Valve Replacement	Contact Lens Materials - Surface Modifications	Polymeric and Albuminated Drug Nanoparticles, Dendrimers
3-3	SLO-2	Tissues, the Extracellular Matrix, and Cell– Biomaterial Interactions	Various other types of metals with its biomedical applications	Engineered Heart Valves	Specialty Lenses - Contact Lens Solutions	Injected Depot DDS
S-4	SLO-1	Host Reaction to biomaterials and their evaluation	Polymers: Basic principle	Angioplasty and Stents	Intraocular Lens Implants (IOLS): Scientific Perspective	Implants and Inserts, Infusion Pumps, Inserts
3-4	SLO-2	Inflammation, Wound healing, and the foreign body response	Polyacrylate, Polyamide and Polyolefins: Properties of biomaterials	Vascular Grafts	Optics of the Eye and Cataracts Emerging Functional Variations of IOLS	Smart DDS, Environmentally Response systems
<b>.</b> .	SLO-1	Systemic toxicity and hypersensitivity	Applications of polymeric biomaterials	Stent Grafts	Biomaterials for IOLS	Transdermal DDS, Passive and Active Transdermal Delivery Systems
S-5	SLO-2	In Vitro assays to assess cell and tissue compatibility in biomaterial/medical device	Various other types of metals with its biomedical applications	Engineered Vascular Grafts	IOLS with Variations of Optical Function	Oral drug delivery – Controlled release in the GI tract
S-6		Evaluation for regulatory purposes	Ceramics: Basic Principles, Bioactive Glasses and Glass-Ceramics	Cardiovascular Devices: Pacemakers and Icds (For Cardiac Arrhythmias)	Corneal Inlays and Onlays	Regulatory Overview of Medical Products Using Biomaterials: Global Regulatory

						Strategy - Design Control, Risk Analysis
	SLO-2	Application-Specific in vitro assays	Calcium Phosphate Ceramics, Natural and Synthetic Hydroxyapatites, Alumina: Synthesis of ceramic materials	Cardiac Assist and Replacement Devices (For Heart Failure)	Synthetic Biomaterials in the Cornea - Optical Requirements - Biological Requirements - Permeable Intracorneal Lenses	Biocompatibility Assessment for Biomaterials in Medical Devices - Manufacturing Controls and Post Market Oversight
S-7	SLO-1	Future challenges in In Vitro Assessment of cell and tissue compatibility	Mechanical Properties and Porosity	Miscellaneous Cardiovascular Devices	Impermeable Intracorneal Lenses - Synthetic Materials for Corneal Onlays	Premarket Clearance, Premarket Approval (PMA)
3-1	SLO-2	Selection of In Vivo tests according to intended use	Stability and Biocompatibility	Implantable Cardiac Assist Devices and IABPs	Glaucoma Drains and Implants	Clinical and Animal Trials of Unapproved Devices
S-8	SLO-1	Biomaterial and Device perspectives in In Vivo testing	Applications of ceramics biomaterials	Ventricular Assist Device and Blood- Contacting Materials	Retinal Prostheses and concerned biomaterials	Sterilization, Shelf-Life, and Aging
3-0	SLO-2	Specific biological properties assessed by In Vivo tests	Various other types of metals with its biomedical applications	Orthopedic applications: Total hip replacement	Cochlear Prostheses – Overview of the Auditory System	Ethical Issues in Biomaterials and Medical Devices: Protection of Patients
	SLO-1	Selection of animal models for in vivo lesis	Degradation of metallic and polymeric biomaterials	Knee replacement	Cochlear Prostheses - Materials and Electrode Arrays	Good Laboratory, Manufacturing and Clinical Practice
<b>S-9</b>		Future Perspectives on In Vivo medical device testing	Degradation of ceramic biomaterials	Miscellaneous orthopedic Devices	The role of biomaterials in stimulating bioelectrodes- Active chemical processes and Passive chemical processes	Protection of Research Subjects - Conflicts of Interest

Learning	1.	David Williams., Essential biomaterials science, 1 st ed., Cambridge University Press, 2014	3.	Buddy Ratner, Allan Hoffr
Resources	2.	Lysaght M, Webster T J., Biomaterials for artificial organs, 1st ed., Woodhead Publishing Limited, 2011		Introduction to Materials in

. Buddy Ratner, Allan Hoffman, Frederick Schoen, Jack Lemons., Biomaterials Science - An Introduction to Materials in Medicine, 3rd ed., Academic Press, 2012

Learning Ass	essment													
	Bloom's			Conti	nuous Learning Ass	essment (50% weigl	htage)			Final Examination	n (50% weightage)			
	Level of Thinking	CLA – 1 (10%)		CLA – 2 (15%)		CLA –	3 (15%)	CLA – 4	(10%)#		r (50% weightage)			
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-			
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-			
Level 3	Evaluate Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-			
	Total	100	0 %	10	0%	100 %		10	0%	100 %				

Course Designers										
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts								
1. Sathyanarayanan J, Mindray Medical India Pvt Ltd, sathyanarayananjayagopal@mindray.com	1. Dr. S. Poonguzhali, Anna University, poongs@annauniv.edu	1. Mr. P. Muthu, SRMIST								
2. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	2. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	2. Mr. S. Gnanavel, SRMIST								

Course Code	1867631		BIOSENSORS		Course Category	E				P	rofessi	onal El	ective					L 3	T 0		C 3
Pre-requence Course	ses		Co-requisite Courses		Progr Cou	essive Irses	Nil														
Course O	ffering Department	Electronics an	nd Communication Engineering Dat	a Book / Codes/Standards	Nil																
Course Learning Rationale (CLR): The purpose of learning this course is to:					Lea	rning					Pro	ogram	Learn	ing O	utcon	nes (F	PLO)				
CLR-1 :	Utilize the various c	oncepts and terminolog	gies of measurement system		1	2 3	}	1	2	3	4 5	6	7	8	9	10	11	12	13	14	15
CLR-4 :	Analyze the physiolo Utilize the working p	rinciples of transducer ogy of human sensory rinciples of biological s applications of biosen	systems sensors		(Bloom)	ncy (%)	(v/) 111A	vledge		oment	Analysis, Design, Research Adem Tool Heade	b D	Sustainability		Nork		Finance	0			
		ensors for medical diag			Thinking (Bloom)			Engineering Knowledge	n Analysis	& Development	Analysis, Design, Re Andern Tool I Isane	& Culture	Environment & Su		al & Team	Communication	Mgt. &	ig Learning			
Course Le	earning Outcomes (	CLO): At the end of t	this course, learners will be able to:		Level of	Expecte	Experied	Enginee	Problem .	Design	Analysi:	Society	Environ	Ethics	Individual	Commu	Project I	Life Long	PSO - 1	PSO - 2	PSO - 3
CLO-1 :	Identify the concept	s of measurements and	d the errors associated with measurement		3	80 7		M	-				-	-	-	-	-	-	M	-	-
		principles of transduc				80 7		М	-	-		-	-	-	-	-	-	-	М	-	-
CLO-3 :		ogical functions of hun				75 7		М	-	-		-	-	-	-	-	-	-	М	-	-
			ised in medical diagnosis			80 7		М	-	-		-	-	-	-	-	-	-	М	-	-
			sed in medical diagnosis			80 7		М	-	-		-	-	-	-	-	-	-	М	-	-
CLO-6 :	Implement the mode	ern technologies in bios	sensors		3	80 7	0	М	-	-		-	-	-	-	-	-	-	М	-	-

		Fundamentals of measurement system	Transducers	Biological sensors	Biosensors	Fiber optic sensors
Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	Functional elements of an instrumentation system	Classification of transducers	Study of biological sensors in the human body: neuronal mechanism	Biosensors – Introduction	Fiber optic sensors: Introduction
3-1	SLO-2	Functional elements of an instrumentation system		Study of biological sensors in the human body: neuronal mechanism	Biosensors – Introduction	Fiber optic sensors: Introduction
S-2	SLO-1	Static characteristics	Characteristics for selection of transducers	pacinian - functions	components of Biosensors	Fiber optic biosensors: Introduction
3-2	SLO-2	Static characteristics	Characteristics for selection of transducers	pacinian - functions	components of Biosensors	Working and principle
S-3	SLO-1	Static characteristics	Resistive transducers: RTD	Chemoreceptor	Classification of biosensors	Optical biosensors for measurement of blood glucose level
0-0	SLO-2	Static characteristics	Thermistor	Chemoreceptor	Classification of biosensors	Optical biosensors for measurement of blood glucose level
S-4	SLO-1	Dynamic characteristics	Resistive transducers: Strain gauge	hot and cold receptors	Biocatalysts based biosensor	Smart sensor: Introduction
3-4	SLO-2	Dynamic characteristics	Resistive transducers: Strain gauge	hot and cold receptors	Biocatalysts based biosensor	Working
S-5	SLO-1	Errors in measurements: sources of errors	Piezoelectric effect transducer: Construction	baro receptors	Enzyme immobilisation	Applications of smart sensor
0-0	SLO-2	Errors in measurements: sources of errors	Working	baro receptors	Enzyme immobilisation	Applications of smart sensor
S-6	SLO-1	Errors in measurements: types of errors	Hall effect transducer: Construction	sensors for smell	Glucose Biosensor	Lab on a chip- Introduction, Need

	SLO-2	Errors in measurements: types of errors	Working	sensors for smell	Glucose Biosensor	Block diagram	
0.7	SLO-1	Statistical analysis of data	Capacitive transducers	sensors for sound	bio affinity based biosensor	Applications	
S-7		Statistical analysis of data	5	sensors for sound	bio affinity based biosensor	Advantages and Disadvantages	
S-8	SLO-1	Standards: international standards, primary standards	Inductive transducers	sensors for vision	microorganism based biosensors	eNose: Construction	
5-6	SLO-2	secondary standards and working standards	Construction and Working	sensors for vision	microorganism based biosensors	Working	
S-9	SLO-1	Calibration methodologies	Photomultiplier tube	Sensors for osmolality and taste	Advantages and limitations of Biosensor	Applications of eNose	
3-9	SLO-2	Calibration methodologies	Construction and Working	Sensors for osmolality and taste	Advantages and limitations of Biosensor	Applications of eNose	
Learn Resou	• (0)P)/0 2014						

& Co (P) Ltd, 2014
Patranabis D, "ensors and transducers", 2nd ed., Prentice Hall of India, 2004

Learning As	sessment													
	Bloom's				Final Examinatio	n (E09/ woightage)								
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	l (10%)#	Final Examination (50% weighta				
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember	30 %		30 %		30 %		30 %		30%				
Level I	Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-			
Level 2	Apply	40 %		40 %		40 %		40 %	_	40%				
Leverz	Analyze	40 /0	-	40 /0	-	40 /0	-	40 /0	-	4070	-			
Level 3	Evaluate	30 %		30 %		30 %		30 %		30%				
Levers	Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-			
	Total	10	0 %	10	0%	10	0 %	10	0 %	10	0 %			
# CLA / ac	n ha from any combination	n of thoopy Appiana	aanta Caminara Taa	h Talka Mini Draia	ata Casa Studioa S	olf Study, MOOCo	Cartificationa Canf	Deper etc						

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Dr. D. Kathirvelu, SRMIST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	2. Mr. V. KarthikRaj, SRMIST

Course Code 18ECE264T	Course Name	DIAGNOSTIC AND THERA	PEUTIC EQUIPMENT	Course Category	Е	Professional Elective	L 3	T 0	P 0	C 3
Pre-requisite Courses Course Offering Department	Electro	Co-requisite Courses nics and Communication Engineering	Data Book / Codes/Standards	Progre Cour Nil		Nil				

Course Learning Rationale (CLR): The purpose of learning this course is to:	Learning Program Learning Outcomes (PLO)																		
CLR-1: Gain thorough knowledge about the working principle of coronary care equipments	1	2	3	Ē	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Understand the functioning and uses of different surgical equipments								_			ý								
CLR-3: Utilize different components of respiratory care equipment and Bone mineral density measuring techniques	Ê							Research			bilit								
CLR-4: Comprehend about the different components and working principle of sensory diagnosis and therapeutic equipments	oor	y (%)	t (%)		dge		ent	ese			aina		Work		Ce				
CLR-5: Understand the functioning of different types of physiotherapy and electrotherapy equipments	B (B	enc	nen		wle	s	nd	ı, Re	age	е	Sustainability		ъ Е		Finance	g			
CLR-6: Understand the functioning of electrotherapy equipments	hinking (Bloom)	Proficiency (	Attainment		Knowledge	Analysis	velo	Design, I	Us	Culture	~ŏ		Team	io	& F	arning			
	Thir	P P	4 At		ing	Ana	& Development	, De	Tool Usage	& Cl	neni		8	lical	Agt.	J Le			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected		Engineering	Problem	Design 8	Analysis, I	Modern ⁻	Society 8	Environment	Ethics	Individual &	Communication	Project Mgt.	Life Long	PS0-1	PSO - 2	PSO - 3
CLO-1: Explain the working principle of coronary care equipments	3	80	75		Н	-	-	-	-	-	-	-	-	-	-	-	L	-	-
CLO-2: Describe the functioning and uses of different surgical equipments	3	80	70		L	-	-	-	-	-	-	-	-	-	-	-	L	-	-
CLO-3 : Give an overview about the different components and working principle of respiratory care equipments and Bone mineral density measuring techniques	3	75	70		М	-	-	1	-	-	-	-	-	-	-	-	L	-	-
CLO-4: Give an overview about the different components and working principle of sensory diagnosis and therapeutic equipments	3	80	75		М	-	-	-	-	-	-	-	-	-	-	-	L	-	-
CLO-5: Illustrate the functioning of different types of physiotherapy and electrotherapy equipments	3	80	70		М	-	-	-	-	-	-	-	-	-	-	-	L	-	-
CLO-6 : Illustrate the functioning of different types of electrotherapy equipments	3	80	70		Н	-	-	-	-	-	-	-	-	-	-	-	L	-	-

		Coronary care equipments	Surgical equipments	Respiratory care equipments and Bone mineral density measuring equipments	Sensory diagnosis equipments	Physiotherapy and electrotherapy equipments
Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	Need for cardiac pacemaker	Principles of surgical diathermy unit	Mechanics of respiration, Artificial ventilation	Mechanism of hearing, sound conduction system	Short wave diathermy, Simplified circuit diagram, Methods of applying electrodes
3-1	SLO-2	Types of pacemaker and different modes of operation	Surgical diathermy machine Block diagram and description	Respiratory care equipment: humidifier	Measurements of sound, Transducers used to measure sound	Inductive and condenser method, Inductive heating by coil in drum
S-2	SLO-1	External pacemaker – Block diagram	Endoscopy basic components	Nebulizer, aspirators	Block diagram and description of basic audiometer	Micro wave diathermy, Production of microwaves
3-2	SLO-2	Three types of External pacemaker based on the type of output waveform	Types of endoscopy – Fiber optic and rigid types	Ventilators –Functional diagram, Types of ventilator	pure tone audiometer	Simplified circuit diagram of micro wave diathermy
S-3	SLO-1	Implantable pacemakers, requirements, Classification codes for pacemakers	Applications of endoscopy- Laparoscope, gastro scope	Classification of ventilator	Speech audiometer	Ultrasonic therapy unit- Block diagram description
3-3	SLO-2		Applications of endoscopy- bronchoscope, arthroscopy	Ventilator- Microprocessor controlled ventilator	Calibration of audiometers	Dosage control in ultrasonic therapy unit
S-4	SLO-1	Ventricular synchronous demand pacemaker	Cobalt T-60 machine – Basic components	Electronics block diagram of ventilator	Block diagram and description of Bekesy audiometer system	Electro diagnosis and electrotherapy basics – Intensity time curve of muscles,
3-4	SLO-2	Rate responsive pacemaker	Gamma Knife	Capnography – Block diagram description	Block diagram and description of Evoked response audiometry system	Different types of waveforms used in electrotherapy
S-5	SLO-1	Need for Defibrillator, AC Defibrillator	Cryogenic surgical techniques	Anesthesia machine – schematic diagram of an anesthesia machine	Hearing aids, Conventional analog type hearing aid	Electro diagnostic/ Stimulating unit – Schematic block diagram
3-3	SLO-2	DC Defibrillator – schematic diagram	Applications of cryogenic surgery	Block diagram & description of an anesthesia monitor	Digital hearing aid	Interferential current therapy – Principle of generation of interference currents

S-6	SI ()_1	Defibrillator electrodes, DC Defibrillator with synchronizer	Operating microscope – basic principle	Baby incubator – Principle of op	peration	cochlear implants	Transcutaneous electrical nerve stimulation
3-0	SLO-2	Automatic or advisory external defibrillator (AED)		Baby incubator – Block diagran description	n	Different types of cochlear implants	Spinal cord stimulator
S-7	SLO-1	Implantable Defibrillator architecture and types	Lithotripsy- Schematic of an acoustic shock wave pulse		MD measurements: Single X-ray Tonometers Single X-ray Tonometers (SXA) – basic principle tonometers		Diaphragm pacing by radio frequency for treatment of Chronic ventilator insufficiency
3-1	SLO-2	Pacer cardioverter defibrillator		Single X-ray absorptiometry (S Instrumentation	XA) –	Non-contact type tonometry	Deep brain stimulation
S-8	SLO-1	Defibrillator analyzer – block diagram	Modern lithotripter system – Block diagram description	Dual X-ray absorptiometry (DX principle		Measurement of basal skin response and galvanic skin response - Principle	Bladder stimulator – schematic diagram of bladder stimulator
3-0	SLO-2	Defibrillator protection circuit in ECG		Dual X-ray absorptiometry (DX Instrumentation			Circuit diagram of bladder stimulator
S-9	SLO-1	Heart lung machine	Focussing system, Coupling, Imaging systems in Lithotripsy machine	Quantitative ultrasound bone de - basic principle			Phototherapy unit – Principle of operation and application
3-9	SLO-2	Types of oxygenators used in Heart lung machine	laser lithotripsy	Quantitative ultrasound bone de - Instrumentation	ensitometer	EMG feedback for rehabilitation study	Types of phototherapy unit
Learn Resou	•	<ol> <li>Albert M. Cook and Webster. J.G, The</li> <li>Sydney Lou Bonnick, Lori Ann Lewis,</li> <li>Cotton.P. B, and Williams. C. B., Endor Fundamentals, 6th ed., Wiley-Blackwe</li> </ol>	cal instrumentation, 3 rd ed., Tata McGraw Hi rapeutic Medical Devices", 1 st ed., Prentice F Bone Densitometry and Technologists, 3 rd en oscopic Equipment, in Practical Gastrointestii II, 2008 rrk. Miller.D, Primer of Arthroscopy, 2 nd ed., E	fall, 1982 d., Springer, 2013 nal Endoscopy: The	Elsevier 7. Leslie Ci Measure	Risegari, The Art of Cryogenics Low-Tempe Science, 2007 romwell, Fred J.Weibell, Erich A.Pfeiffer, Bio- ments, 2nd ed., Pearson Education, 2007 Webster, Specifications of Medical Instrumen 015	Medical Instrumentation and

Learning Asses	ssment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weigl	htage)			Final Examination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA-4	(10%)#		r (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Practice Theory		Theory	Practice
Level 1	Remember	30 %		30 %		30 %		30 %		30%	
Level I	Understand	30 //	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply	40 %		40 %		40 %		40 %		40%	
Level 2	Analyze	40 /0	-	40 %	-	40 /0	-	40 %	-	4076	-
Level 3	Evaluate	30 %		30 %		30 %		30 %	_	30%	
Level 3	Create		-	30 %	-	30 %	-	30 %	-	30%	-
	Total	100	) %	10	0 %	100	0 %	10	0%	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Sathyanarayanan J, Mindray Medical India Pvt Ltd, sathyanarayananjayagopal@mindray.com	1. Dr. S. Poonguzhali, Anna University, poongs@annauniv.edu	1. Dr. S. P. Angeline Kirubha, SRMIST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	2. P. Vinupritha, SRMIST

Cour Cod		18ECE265J	Course Name	BIOMEDICAL SIGNAL PROCESSIN	G	Course Category		Е			E Professional Elective $\begin{array}{c c} L & T \\ \hline 2 & 0 \end{array}$								T 0	P 2	C 3	
Co	equisite urses	18ECC204J	Electronico and Oc	Co-requisite Courses Nil	/ October (Otensidende	Co	gress ourse		Nil													
Course	Offering	Department	Electronics and Co	mmunication Engineering Data Book	/ Codes/Standards	Nil																
		g Rationale (CLI		ning this course is to:		Le	earnii						-	am Le		-						
			haracteristics of various bio signals         1         2         3         4         5         6         7           /ledge in time domain and frequency domain filtering techniques to remove noise from bio signals         1         2         3         4         5         6         7							7	8 9	10	11	12	13	14	15					
CLR-2 CLR-3			ne domain and frequency rocessing techniques in a		om dio signais							÷			lity							
CLR-3			avelets and speech signation			(mo	(%)	(%)	e		Ħ	sear			inab	÷	É	e				
			istics of non-stationary sig			(Bic	ency	nent	wled	6	bme	, Re	age		usta	W. w	-	nanc	p			
CLR-6	: Analyz	ze the classificati	ion of normal and abnorm	al ECG signal.		lking	ofici	tainn	Know velop Usaç						t & S	Ľ	tion 1	E S	Learning			
						Thir	d Pr	d At	R Cul						men	a 	nica	Mgt.	g Le			
			-	ourse, learners will be able to:		Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)							Environment & Sustainability	Ethics Individual & Taam Mode	- 0	Project Mgt. & Finance	Life Long I	PSO - 1	PSO - 2	PSO - 3
				tics of various biomedical signals	1 - 1	3	80	75									-	-	-	-	-	
				ng techniques to remove noise from biomedica. rocess the ECG and HRV signals.	i signais	3	80 75	70 70									-	-	M	-	-	
CLO-4			m techniques to analyze t			3	80	75						-		-	-	-	M	-	-	
CLO-5				nals and perform the classification of normal a	nd abnormal signal	3	80	70	M - M - M -						-	- L	L	М	-	М	-	L
CLO-6	: Perfor	m the classificati	ion of normal and abnorm	nal signal		3	80	70	М	-	-	-	-	-	-		-	-	-	-	-	-
Duratio	n (hour)		12	12	12						12								12			
S-1	SLO-1	Bioelectric signa	als-ENG, ERG	Time domain filters-Synchronized averaging	ECG waveform analys	is			Introductic	on to w	avelets	;			Ar	nalysis	of nor	-statio	onary	signal	S	
• •	SLO-2	EOG , EEG sign	al characteristics	Moving averaging filters	Envelope Extraction ar	nd Analysis			Continuou	s and l	Discret	e wav	relet		Ti	me va	riant sy	rstern				
S-2	SLO-1	ECG signal phys	siological origin	Frequency domain filters Removal of high frequency noise- Butterworth low pass filter	P wave detection				Discrete wavelet transform					Fi	xed se	gment	ation					
	SLO-2	characteristics		Design procedure	Estimation of R-R Inter	val			oyramid al	lgorithr	n				Sł	nort tin	ne Fou	rier tra	ansfor	т		
S 3-4	SLO-1 SLO-2	Lab1: Represent	tation of basic biosignals	Lab4: Design of Butterworth Low pass filter to remove high frequency noise	Lab7: Analysis of ECG	signal			Lab 10: W Processin		transfo	orm foi	r 1-D	Signal	La	ib 13:	Mini pr	oject				
S-5	SLO-1	PCG signal		Removal of low frequency noise- Butterworth high pass filters	QRS complex detectio subtraction method	n-Template			Compariso wavelet tra			transfo	orm a	and	Ac	laptive	segm	entati	on			
3-3	SLO-2	Characteristics		Removal of periodic artefacts-Notch & Comb Filter	Template correlation n	nethod			Comparison of Fourier transform and wavelet transform					Al	gorithr	n						
S-6	SLO-1	VAG		Introduction to Adaptive filter	Derivative based meth detection algorithm,	od-High spe	ed Q	RS	Speech analysis – Cepstrum					Aι	ıtocori	elation	funct	ion me	ethod			
3-0	SLO-2	VMG		Adaptive noise canceller	High speed QRS deteo	-			Homomorphic filtering of speech signals generalized					zed like	elihoo	d ratio						
S 7-8	SLO-1 SLO-2	Lab2: Correlation	n of Biosignals	Lab5: Design of Butterworth high pass filter to remove low frequency noise	ECG	•	Lab 11: Analysis of speech signal Lab 14: Mini project															
e 0	SLO-1	Bioacoustic sign	al-Auscultation	Optimal Filtering: Wiener Filter	Simple high speed QR algorithm-Differentiatio			1	Time frequ	iency i	represe	entatio	n			assific CG be	ation c ats	f sign	al: No	rmal a	nd ec	topic
S-9	SLO-2	Voice, Korotkoff	sound	Wiener Filter(Contd.)	Moving average integr	ator, thresho	olding	,	Spectrogra	am					Al	gorithr	n					

S-10	SLO-1	Biomechanical Signal	Wiener Filter(Contd.)	Heart rate variability (HRV)-Introduction	Time scale representation	Case studies- in ECG and PCG
	SLO-2		Wiener Filter	Time & Frequency domain methods	Scalogram	PCG and carotid pulse
S 11-1	SLO-1 SLO-2	Lab3: Analysis of EEG signal	Lab6: Design of Adaptive filters	Lab9: Analysis of Heart rate variability	Lab 12: Mini project	Lab 15: Model Practical Exam

 Learning
 1.
 Rangaraj.M.Rangayyan, Biomedical signal processing, 2nd ed., Wiley-IEEE press, 2015

 Resources
 2.
 Reddy D.C, Biomedical signal processing: Principles and techniques, 2nd ed., Tata McGraw-Hill, 2005

3. Willis J. Tompkins, Biomedical Digital Signal Processing, PHI, 2004

Learning Assess	sment											
	Bloom's			Conti	nuous Learning Ass	essment (50% weigl	ntage)			Einal Examination	n (50% weightage)	
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	l (10%)#		i (50% weigi itage)	
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15% 15%		
	Total 100 % 100 % 100 % 100 %											

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Sathyanarayanan J, Mindray Medical India Pvt Ltd, sathyanarayananjayagopal@mindray.com	1. Dr. S. Poonguzhali, Anna University, poongs@annauniv.edu	1. Dr. U. Snekhalatha, SRMIST
2. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	2. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	2. Dr. T. Rajalakshmi, SRMIST

Course Code	18ECE266T	Course Name			BIOMEN	ΛS		Course ategoi		Е				Prof	essior	nal Ele	ective	1				L 3	T 0	P 0	C 3
Pre-requis Courses	INII			Co-requisite Courses	Nil				ogress Course		Nil														
Course Offe	ering Department	Electro	onics and Commu	unication Enginee	ring	Data Book / Codes/Standa	rds	Nil																	
Course Lear	rning Rationale (CL	R): The pu	rpose of learning	this course is to:					earni	ng					Prog	yram L	Learn	ning O	)utco	mes (	PLO)				
CLR-1: G	et an idea about the	MEMS and N	Aicrosystem basio	cs				1	2	3		2	2 3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: U	Inderstand the micros	system fabrica	ation processes a	and materials used	d for MEM	IS											×								
CLR-3 : U	Inderstand the micror	nachining pro	ocesses					l î		-				arch			pilit								
CLR-4 : A	cquire the knowledge	e required for	the development	t of microfluidic sy	stems			(Bloom)	y (%)	rt (%)	.	afinaiw	ent e	esee			aina		Work		lce				
CLR-5: Id	lentify the application	s of bioMEM	S in healthcare in	ndustry				g (B	ency	men	-		onment	n, Re	sage	Ð	Sustainability		me N		inan	ing			

CLR-6 : Understand the applications of MEMS and BioMEMS	inking	Profici	Attain	g Kno	nalysi	Develo	Jesign	ol Usi	Cultur	nt & S		& Tear	ation	t. & F	-earni		
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of Th	Expected F	Expected /	Engineering	Problem A	Design & [	Analysis, D	Modern Tc	Society & (	Environme	Ethics	Individual &	Communic	Project Mgt	Life Long I	ö	PSO - 2 PSO - 3
CLO-1: Analyze the working principle of MEMS & Microsystems in healthcare domain	3	80	75	М	-	L	-	-	-	-	-	-	-	-	-	-	
CLO-2: Explain the microsystem fabrication processes and materials used for MEMS	3	80	70	-	-	L	-	-	-	-	-	-	-	-	-	-	
CLO-3 : Differentiate the various Micromanufacturing techniques in miniature applications	3	75	70	-	-	М	-	-	-	-	-	-	-	-	-	-	
CLO-4 : Analyze the working principle of Microfluidic Systems in healthcare	3	80	75	-	-	М	-	-	-	-	-	-	-	-	-	М	
CLO-5: Illustrate the concepts of BioMEMS with suitable examples	3	80	70	-	-	М	-	-	-	-	-	-	-	-	-	М	
CLO-6 : Analyze the applications of MEMS in Biomedical domain	3	80	70	М	-	L	-	-	-	-	-	-	-	-	-	-	

		Microsensor and Microactuator	Materials for MEMS & fabrication Techniques	Basics of Micromachining	Microfluidics	BioMEMS
Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	MEMS and Microsystems- Introduction	Substrates and Wafers	Bulk micromanufacturing	Microfluidics Introduction	BioMEMS Introduction
3-1	SLO-2	Advantages of MEMS & Microsystems	Silicon as a Substrate Material	Isotropic etching	Fluid Properties	Application of BioMEMS
S-2	SLO-1	Typical MEMS and Microsystem Products	Materials for MEMS: Silicon compounds	Anisotropic etching	Applications of Microfluidic Systems in biomedical	Lab on a chip
5-2	SLO-2	Application of Microsystems in Healthcare Industry	Silicon Piezoresistor	Etch Stop Techniques	Fluid actuation methods	DNA Sensors
S-3	SLO-1	Microsensors- Acoustic wave sensor	Gallium arsenide	Etch Stop Techniques	Dielectrophoresis (DEP)	Hybridization Types
3-3	SLO-2	Microsensors- Optical Sensors	Quartz	Dry Etching	Electrowetting	Microsystem approaches to PCR
S-4	SLO-1	Microsensors- Biomedical Sensors & Biosensors	Piezoelectric crystals	Dry Etching Techniques	Electrothermal	Microsystem approaches to PCR
0-4	SLO-2	Chemical Sensors	Polymers	Dry Etching Techniques	Thermocapillary	Mobile Point of Care Monitors
	SLO-1	Pressure Sensors	Packaging Materials	Surface Micromachining	Electroosmosis	Implantable MEMS for glaucoma therapy
S-5	SLO-2	Thermal Sensors	Photolithography	Surface Micromachining Process Sequence	Optoelectrowetting (Light-actuated microfluidic device)	Implantable MEMS for glaucoma therapy
S-6	SLO-1	Microactuator	Ion Implantation	LIGA Introduction	Microfluidic channel	MEMS based Implantable Drug Delivery System

	SLO-2	Different types of actuation	Diffusion	Application	Microdispenser	MEMS based Implantable Drug Delivery System
S-7	SLO-1	Application of Microactuations: Microgrippers	Oxidation	LIGA Process	MICTODEEDIE	Integrated microsystems for artificial retinal implants
3-1	SLO-2	Application of Microactuations: Microvalve and Micropump	Chemical vapor deposition (CVD)	LIGA Process	Microfilter	Integrated microsystems for artificial retinal implants
S-8	SLO-1	Inch-Worm Technology		Merits and Demerits of Bulk Micromachining	Microseparator	MEMS-based neuronal intervention devices
3-0		MICTO-accelerators	(PVD)	Merits and Demerits of Surface Micromachining	Microreactor	MEMS-based neuronal intervention devices
S-9		Examples of biomedical microsensors and microactuators		Merits and Demerits of LIGA Process	Micromixer	Current Point of Care Technology
3-9	SLO-2	Examples of biomedical microsensors and microactuators	Etching	Summary of Micromachining	Capillary Electrophoresis	Current Point of Care Technology

Learning Resources	<ol> <li>Tai-Ran Hsu, MEMS &amp; Microsystems- Design, Manufacture and Nanoscale Engineering, 2nd ed., John Wiley &amp; Sons, 2008</li> <li>Nitaigour Premchand Mahalik, MEMS, Tata McGraw Hill, 2008</li> <li>Steven S.cSaliterman, Fundamentals of BioMEMS &amp; Medical Microdevices, 1st ed., International Societ for Optical Engineering, 2006</li> <li>Ellis Meng, Biomedical Microsystems, 1st ed., CRC Press, 2011</li> <li>Simona Badilescu, Muthukumaran Packirisamy, BioMEMS Science and Engineering Perspectives, 1st ed.</li> </ol>	Springer, 2006         10. Wanjun Wang & Steven A.Soper, BioMEMS- Technologies and applications, 1 st ed., CRC Press, 2007         y         11. Walter Karlen and Krzysztof Iniewski, Mobile Point-of-Care Monitors and Diagnostic Device Design, 1 st ed., CRC Press, 2015         12. Nam-Trung Nguyen & Steven T Wereley, Fundamentals and Applications of Microfluidics, 2 nd ed.,
	<ol> <li>Simona Badilescu, Muthukumaran Packirisamy, BioMEMS Science and Engineering Perspectives, 1st e CRC Press, 2011</li> <li>Albert Folch, Introduction to BioMEMS, 1st ed., CRC Press, 2013</li> <li>Gerald A Urban, BioMEMS, 1st ed., Springer, 2006</li> <li>Chang Liu, Foundations of MEMS, 2nd ed., Prentice Hall, 2012</li> </ol>	<ul> <li>Artech House, 2006</li> <li>13. Dongqing Li, Encyclopedia of Microfluidics and Nanofluidics, 1st ed., Springer, 2008</li> <li>14. Chao-Min Cheng, Chen-MengKuan &amp; Chien-Fu Chen, In-Vitro Diagnostic Devices: Introduction to Current Point of Care Diagnostic Devices, 1st ed., Springer, 2016</li> <li>15. Mel L. Mendelson, Learning Bio-Micro-Nanotechnology, 1st ed., CRC Press, 2013</li> </ul>

Learning As	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weigl	htage)			Final Examinatio	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA – S	3 (15%)	CLA –	4 (10%)#		ii (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	100	0 %		0%	100	0%		0 %	10	0 %

# CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

-

____

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Sathyanarayanan J, Mindray Medical India Pvt Ltd, sathyanarayananjayagopal@mindray.com	1. Dr. S. Poonguzhali, Anna University, poongs@annauniv.edu	1. Mr. Karthik Raj V, SRMIST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	2. Dr. D. Ashok Kumar, SRMIST

Course Code	18ECE267J	Course Name	BIOMECHAM	NICS	 ourse tegory	,	Е	Professional Elective							L 2	T 0	P 2	C 3				
Pre-requis Courses Course Offe	INII	Electro	Co-requisite Courses Nil nics and Communication Engineering	Data Book / Codes/Standards		gress ourse		Nil														
Course Lea	rning Rationale (CL	R): The pu	rpose of learning this course is to:		L	earnii	ng					Prog	ram L	.earni	ing O	utcor	nes (l	PLO)				
CLR-1: U	tilize concepts of kine	ematics and k	kinetics of human motion and functioning of bo	one.	1	2	3		1	2 3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-3 : AA CLR-4 : AA CLR-5 : UA CLR-6 : UA Course Lean	nalyze mechanics ap nalyze movements a tilize the fluid mediur nderstand the conce ming Outcomes (Cl	plied in vario nd loads app n in human m pts of reactive - <b>O):</b> At the o	etal muscle, elbow and hand us movement and loads on shoulder, hip and lied on spine, foot and its effect on human gai novement and application of sports biomechar a services applied in human movements end of this course, learners will be able to:	it. nics.	 Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)		Engineer	Problem Analysis Design & Development	ú.	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO - 2	PSO - 3
			omechanics in the field of kinematics and kine	etics of human motion	3	80	75		Μ	М -	-	-	-	-	-	-	-	-	L	L	-	-
			pints, skeletal muscle, elbow and hand.		3	80	70			М -	L	М	-	-	-	-	-	-	L	L	L	-
			s forces applied on shoulder, hip and knee.		3	75	70		Μ	M L	М	М	-	-	-	-	-	-	-	-	L	М
CLO-4 : A	pply various loads or	n spine and fo	ot to analyze the information on various huma	an gait.	3	80	75		-	- M	М	М	-	-	-	-	-	-	-	-	L	М
			nowledge in various applications related to hu	iman movement	3	80	70		Μ	М -	-	-	-	-	-	-	-	-	L	L	-	-
CLO-6 : A	pply rehabilitation se	rvices in all bi	iomechanical activities		3	80	70		-	- М	L	М	-	-	-	-	-	-	L	L	L	-

		Kinetic, kinematics of human motion & Biomechanics of human bone	Biomechanics of skeletal muscle, Elbow and hand	Biomechanics of Shoulder, hip and knee	Biomechanics of spine Analysis of gait	Sports Biomechanics
Durati	on (hour)	12	12	12	12	12
S-1	SLO-1	Forms of motion, Spatial reference systems, analysis of human movement	Joint architecture	Structure of the shoulder	Structure of the spine, Spinal curves	Biomechanics in physical education- Qualitative analysis of kicking
3-1	SLO-2	Standard reference terminology, Joint movement terminology	Articular cartilage and connective tissue	Movements of the shoulder	Movements of the spine	Qualitative analysis of batting
S-2	SLO-1	Basic concepts related to kinetics	Joint stability, Joint flexibility	Muscles of the shoulder	Loads on the spine	Human movement in fluid medium- Nature of fluids
3-2	SLO-2	Mechanical loads on the human body, Effects of loading	Techniques for increasing joint Flexibility, Joint injuries	Loads on the shoulder and common injuries of the shoulder	Common injuries of the back and neck	Laminar and turbulent flow and flow properties
S 3-4		Lab 1: Analysis of mechanical stress and strain	Lab 4: Study of joints	Lab 7: 3D modeling of radius and ulna	Lab 10: Segmentation and modeling of lumbar spine	Lab 13: Mini project
S-5	SLO-1	Linear and angular kinematic quantities	Structural organization of skeletal muscle- Muscle fibers	Structure of the hip	Gait analysis	Buoyancy
3-0	SLO-2	Relationships between linear and angular motion	Motor units and fiber types	Movements at the hip	Various methods in Gait analysis	Drag and lift force
S-6	SLO-1	Kinematics of projectile motion, Factors influencing Projectile trajectory	Factors affecting muscular force generation	Muscles and loads on the hip	Types of phases	Biomechanics in Strength and conditioning Qualitative analysis of squat technique
3-0	SLO-2	Analyzing projectile motion	Muscular strength, power and endurance	Common injuries of the hip Joint	Measurement approaches and systems for gait	Qualitative analysis of Drop jumps
S 7-8		Lab 2: Projectile motion analysis using MATLAB	Lab 5: Study of Body composition parameters	Lab 8: Segmentation and modeling of femur bone	Lab 11: Analysis of gait	Lab 14: Mini project
S-9	SLO-1	Composition and structure of bone tissue	Structure of the elbow	Structure of the knee	Structure of the foot	Qualitative analysis of Throwing technique

	SLO-2	Rono arowith and development	Loads on the elbow and common injuries of the elbow	Movements at the knee	Movements of the foot	Qualitative analysis of Dribbling technique
S-10		Bone response to stress	Structure of the joints of the hand	Muscles and loads on the knee		Biomechanics in sports medicine and rehabilitation
3-10		Osteoporosis	Movements of the hand	Common injuries of the knee and lower leg	Common injuries of foot	Dealing with sports injuries
S 11-12	SLO-1 SLO-2	Lab 3: Measurement of bone mineral density		Lab 9: Segmentation and modeling of fibula and tibia	Lab 12: Repeat class	Lab 15: Model Exam

Learning	1.	Susan J Hall, Basic Biomechanics, 4th ed., Tata McGraw hill, 2004	3.	Roger Bartlett, Introduction to Sports Biomechanics: Analysing Human Movement Patterns, 2 nd
Resources	2.	Duane Knudson, Fundamentals of Biomechanics, 2 nd ed., Springer, 2007		ed., Taylor and Francis, 2007

Learning Ass	sessment										
	Bloom's				Final Examination	n (50% weightage)					
	Level of Thinking	CLA –	(10%)#		i (50% weightage)						
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Total	100	) %	100	0 %	10	0 %	100	)%	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Sathyanarayanan J, Mindray Medical India Pvt Ltd, sathyanarayananjayagopal@mindray.com	1. Dr. S. Poonguzhali, Anna University, poongs@annauniv.edu	1. Dr. D Ashok Kumar, SRMIST
2. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	2. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	2. Ms. A. Bhargavi Haripriya, SRMIST

Course Code	18ECE180J	Course Name	TRANSDUCER ENGINEERING	-	ourse tegory	E	E			Profe	essional	Electiv	)				L 2	T 0		C 3
Pre-requ Cours	INII		Co-requisite Courses			gressiv ourses	/e	Nil												
Course Of	fering Department	Electro	nics and Communication Engineering Data Book / Codes/Stand	ards	Nil															
Course Le	arning Rationale (CL	R): The pur	pose of learning this course is to:		Le	earning	3				Progra	n Lear	ning C	)utcor	mes (	PLO)				
CLR-1 :	Utilize methods of me	asurement, &	know about various types of errors in instruments		1	2	3	1	2 3	4	5	67	8	9	10	11	12	13	14	15
CLR-2 :	Analyze the behavior	of transducers	under static and dynamic conditions and to model the transducers							_		≥								

CLR-3 :	Analyze different types of resistive, inductive and capacitive transducers	Ê		~				arch			istainability								
CLR-4 :	Identify applications of resistive, inductive and capacitive transducer	(Bloom)	cy (%)	t (%)	dge		ant	see			aina		Work		ce				
CLR-5 :	Utilize methods of measurement, & know about various types of errors in instruments	g (Bl	enci	nent	wle	s	m da	Å	sage	Ð	Sust				Finan	ĝ			
CLR-6 :	Locate the different type of sensors used in real life applications and paraphrase their importance	inkinç	ofici	Attainme	Knc	Analysis	velo	sign	$\supset$	ultur	8.0		Team	ion	i⊥ ⊗	arni			
		ЦЦ.	d Pr	d At	ering Knowle	Ana	& De	De	Tool	ບ ຈ	neni		8	nication	Mgt.	J Le			
	earning Outcomes (CLO): At the end of this course, learners will be able to:	Level of .	Expected	Expected	Engineer	Problem	Design 8	Analysis,	Modern ⁻	Society 8	Environn	Ethics	Individual	Commur	Project N	Life Long	PSO - 1	PSO - 2	PSO - 3
CLO-1 :	Apply mathematical knowledge, science, engineering fundamentals to solve problems pertaining to various measurements	3	80	75	Н	Н	-	-	-	-	-	-	-	-	-	-	Н	-	Η
CLO-2 :	Determine the static and dynamic characteristics of transducer	3	80	70	Н	Н	-	М	-	-	-	-	-	-	-	-	Н	-	Н
CLO-3 :	Analyze the resistive, inductive and capacitive transducers which are used for measuring various parameters	3	75	70	Н	-	М	М	-	-	-	-	-	-	-	-	Н	-	Η
CLO-4 :	Select the right transducer for the given application	3	80	75	Н	Н	-	М	-	-	-	-	-	-	-	-	Н	-	Н
CLO-5 :	Identify the various miscellaneous transducers	3	80	70	Н	-	Н	-	-	-	-	-	Н	М	-	-	Н	-	Н
CLO-6 :	Select the right transducer for the given application	3	80	70	Н	Н	-	-	-	-	-	-	-	-	-	-	Н	-	Η

Durati	on (hour)	12	12	12	12	12
S-1	SLO-1	General configuration and description of measuring Instruments	Characteristics of instruments : Static characteristics: Accuracy, precision, resolution, sensitivity	discussion with respect to material	Miscellaneous Transducers: Piezoelectric transducer	Smart Transducers: Smart Sensors, Components of Smart Sensors
5-1	SLO-2	Basic methods of measurement	Characteristics of instruments : linearity, span and range, threshold, Hysterisis, Dead Time	Reluctance change type	Hall Effect transducer	General architecture of Smart Sensors
	SLO-1	Functional Elements of Measurement Systems	Dynamic characteristics	Magnetostrictive type	Magneto elastic sensor	Evolution of Smart Sensors
S-2	SLO-2	Definition, principles of sensing and transduction	Resistive Transducers: RTD Materials, Temperature measurement change in physical properties, 3 wire and 4 wire RTD	Mutual inductance change type	Digital transducers	Advantages of Smart Sensors
S 3-4		Lab1: Identifying the components of measuring instruments.	Lab 4: Characteristics of RTD	Lab 7: Characteristics of Thermistor	Lab10: Characteristics of Hall effect transducer	Lab13: Temperature measurement using LABVIEW and DAQ Hardware
0.5	SLO-1	Units, Standards	Potentiometer Type- Forms, material	Transformer Type	Radiation sensors: Materials	Application area of Smart Sensors
S-5	SLO-2	Unit conversions	Potentiometer Types- resolution, accuracy, sensitivity.	LVDT: Construction, material, output input relationship, I/O curve, discussion.	Radiation sensors: construction, response	MEMS sensor
S-6	SLO-1		Strain gauge: Theory, type, materials, design consideration, sensitivity	RVDT: Construction, material	Photo emissive cell types	NEMS sensor
3-0	SLO-2	Error analysis– Statistical methods	Derivation of gauge factor, variation with temperature, adhesive, rosettes	Synchros, Microsyn	Photovoltaic cells	Proximity sensors
S 7-8		Lab2: Determining the transfer function of a first order transducer	Lab 5: Characteristics of strain gauge	Lab 8: Characteristics of LVDT	Lab11: Characteristics of Synchros	Lab14: Displacement measurement using LABVIEW and DAQ Hardware

		510-1	Problems in Statistical methods- mean, median mode,variance		Capacitive Transducers: Variable distance- parallel plate type	Photodiodes	Fiber optic sensors
S-			Problems in Statistical methods- standard deviation, probable error of one reading	Laws of thermo couple. Reference junction	Capacitive Transducers: variable area- parallel plate, cylindrical type, variable dielectric constant type	Light Dependent Resistor	Biosensors
S-ŕ		SLO-1	Classification of transducers		Capacitive Transducers: calculation of sensitivity. Stretched diaphragm type	Geiger counters	Film sensors
		SLO-2	Selection of transducers		Capacitor Microphone, response characteristics	Scintillation detectors	Environmental Monitoring sensors (Water Quality & Air pollution)
S 11-	5 -	SI 0-2	Lab3: Statistical Error analysis- Mean, SD, variance for an open loop response of thermocouple	Lan b. Characteristics of Thermistor	Lab 9: Characteristics of capacitive transducer		A mini project on MEMS / Nano/ smart/ fiber/ sensor using any software tools

Learning Resources		Doeblin, E.O., Measurement Systems: Applications and Design, 6 th ed., Tata McGraw-Hill, 2011 Bentley, J. P., Principles of Measurement Systems, 4 th ed., Addison Wesley Longman, 2004 Patranabis, D., Sensors and Transducers, 2 nd ed., Prentice Hall, 2010	Murthy, D.V.S., Transducers and Instrumentation, Prentice Hall, 2010 Neubert H.K.P., Instrument Transducers – An Introduction to their Performance and Design, Oxford University Press, Cambridae, 2003
	J.	Patranabis, D., Sensors and Transducers, 2™ ed., Prentice Hall, 2010	Oxford University Press, Cambridge, 2003

Learning Asses	sment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Einal Examinatio	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#		in (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Total	10	0 %	10	0 %	10	0 %	100	0%	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. D. Karthikeyan, Controlsoft Engineering India Pvt Ltd, karthikeyan.d@controlsoftengg.in	1. Dr. J. Prakash, MIT, Chennai, prakaiit@rediffmail.com	1. Mrs.N.Deepa, SRMIST
2. V. Venkateswaran, Instrumentation Consultant, vvenkat99@gmail.com	2. Dr. D. Nedumaran, Madras University, dnmaran@gmail.com	2. Mrs.Indirani, SRMIST

Course Code	18ECE181T	Course Name	MEASUREMENTS AND INS	TRUMENTATION	Cou Categ		E	Ē			I	Profe	ssiona	al Ele	ctive					L 3	Т 0	P 0	C 3
Pre-requ Cours Course Of		Electro	Co-requisite Courses Nil Dirics and Communication Engineering	Data Book / Codes/Standards	N		essiv Irses	e _{Nil}															
Course Le	earning Rationale (CL	R): The pu	rpose of learning this course is to:			Lea	arning						Progr	ram L	earni	ing O	utcom	nes (P	PLO)				
			are used to measure Current and Voltage			1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-3 : CLR-4 : CLR-5 : CLR-6 :	Design circuits to mea Analyze different techr Analyze the working o To study the working c	sure resistan niques to mea f various disp f various reco	are used to measure power and energy ce, capacitance and inductance asure noise and signal processing lay devices and recorders orders end of this course, learners will be able to:			hinking (Blo		Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	hdividual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO - 2	PSO - 3
CLO-1 :	Analyze the technique	s used to me	asure current and voltage			3		75	Н	-	-	-	-	Н	-	-	-	-	-	Н	Н	-	Н
	Analyze the technique							70	Н	-	-	-	-	Н	-	-	-	-		Н	-		Н
			ance, inductance and capacitance					70	Н	Н	М	Н	М	Н	-	-	-	-		Н	Н		Н
			for signal conditioning to the real-world probler			-		75	Н	Н	М	Н	М	-	-	-	Н	-		Н	-	-	Н
			and instrumentation in display and recording de	evices		-		70	Н	-	М	-	Н	-	-	-	-	-		Н	-	-	Н
CLO-6 :	Apply knowledge of m	easurement a	and instrumentation in recording devices			3	80	70	Н	-	-	-	-	Н	-	-	-	-	-	Н	Н	-	Н

ion (hour)	9	9	9	9	9
SLO-1	Introduction to measurements and Instrumentation. Classification of Instruments.	Introduction of power energy measurements	Introduction to measurement of resistance, capacitance, inductance and frequency		Introduction to display devices and recorders
SLO-2	Galvanometer Introduction and its type.	Measurement of power in A.C. circuits	Classification of resistance types	Non-electric parameters	Digital display methods
SLO-1	D'Arsonval Galvanometer – construction, working and torque derivation.	Derivation of total power in A.C circuits	Methods of Low resistance measurement – Ammeter Voltmeter, Kelvins Double bridge method, Potentiometer.	Measurement of Pressure	Digital Storage Oscilloscope,
SLO-2	PMMC – construction, working and torque derivation	Measurement of power in D.C. circuits	Methods of Medium resistance measurement	low and high pressure	Digital Voltmeter
SLO-1	Vibration galvanometer – construction, working and derivation	Derivation of total power in D.C. circuits	Substitution method & Voltmeter - ammeter method	Measurement of Vibration	Ramp type, integrating, potentiometric
SLO-2	Introduction to Moving iron instruments	Introduction to Electrodynamic wattmeter	Wheatstone bridge method	Nature & its quantities	Recorders
SLO-1			Methods of High resistance measurement	Measurement of Temperature	Continuous and discrete recorders
SLO-2	Repulsion type– Construction and working	Errors in Electrodynamic wattmeter	Megger	Thermistor, thermocouple	Strip chart recorder
SLO-1	Electro dynamometer – working principle	Numerical Problem	Methods of Earth resistance measurements	Measurement of Radiation	X-Y recorder
SLO-2	Dynamometer type Instrument- Construction and working	Power measurement in polyphase systems- basics	Introduction and general equations of A.C. Bridges	Pyrometers	UV Recorder
SLO-1	Induction type Instruments	Three Wattmeter method	Methods of Inductance measurements	Measurement of Flow	Direct recording
	SLO-1           SLO-2           SLO-1           SLO-2           SLO-1           SLO-2           SLO-1           SLO-2           SLO-1           SLO-2           SLO-1           SLO-2           SLO-1           SLO-2           SLO-1           SLO-2           SLO-1           SLO-2	Introduction to measurements and Instrumentation. Classification of Instruments.         SLO-1       Galvanometer Introduction and its type.         SLO-2       Galvanometer Introduction and its type.         SLO-1       D'Arsonval Galvanometer – construction, working and torque derivation.         SLO-2       PMMC – construction, working and torque derivation         SLO-1       Vibration galvanometer – construction, working and derivation         SLO-2       Introduction to Moving iron instruments         SLO-2       Introduction to Moving iron instruments         SLO-1       Attraction type – construction and working         SLO-2       Repulsion type– Construction and working         SLO-1       Electro dynamometer – working principle         SLO-2       Dynamometer type Instrument- Construction and working	SLO-1       Introduction to measurements and Instrumentation. Classification of Instruments.       Introduction of power energy measurements         SLO-2       Galvanometer Introduction and its type.       Measurement of power in A.C. circuits         SLO-1       D'Arsonval Galvanometer – construction, working and torque derivation.       Derivation of total power in A.C. circuits         SLO-2       PMMC – construction, working and torque derivation       Measurement of power in D.C. circuits         SLO-1       Vibration galvanometer – construction, working and derivation       Derivation of total power in D.C. circuits         SLO-1       Vibration galvanometer – construction, working and derivation       Derivation of total power in D.C. circuits         SLO-2       Introduction to Moving iron instruments       Introduction to Electrodynamic wattmeter         SLO-1       Attraction type – construction and working       Electrodynamic wattmeter - Construction, Working and derivation         SLO-2       Repulsion type- Construction and working       Errors in Electrodynamic wattmeter         SLO-1       Electro dynamometer – working principle       Numerical Problem         SLO-2       Dynamometer type Instrument- Construction and working       Power measurement in polyphase systems- basics	SLO-1       Introduction to measurements and Instrumentation. Classification of Instruments.       Introduction of power energy measurements       Introduction to measurement of resistance, capacitance, inductance and frequency         SLO-2       Galvanometer Introduction and its type.       Measurement of power in A.C. circuits       Classification of resistance types         SLO-1       D'Arsonval Galvanometer – construction, working and torque derivation.       Derivation of total power in A.C circuits       Methods of Low resistance measurement – Ammeter Voltmeter, Kelvins Double bridge method, Potentiometer.         SLO-2       PMMC – construction, working and torque derivation       Measurement of power in D.C. circuits       Methods of Medium resistance measurement         SLO-1       Vibration galvanometer – construction, working and derivation       Derivation of total power in D.C. circuits       Methods of Medium resistance measurement         SLO-1       Vibration galvanometer – construction, working and derivation       Derivation of total power in D.C. circuits       Substitution method & Voltmeter - ammeter method         SLO-2       Introduction to Moving iron instruments       Introduction to Electrodynamic wattmeter       Wheatstone bridge method         SLO-1       Attraction type – construction and working       Electrodynamic wattmeter - Construction, Working and derivation       Methods of High resistance measurement         SLO-2       Repulsion type – Construction and working       Errors in Electrodynamic wattmeter	SLO-1       Introduction to measurements and Instrumentation. Classification of Instruments.       Introduction of power energy measurements       Introduction to measurement of resistance, capacitance, inductance and frequency       Introduction to measurement of Non- Electric Quantities         SLO-2       Galvanometer Introduction and its type.       Measurement of power in A.C. circuits       Classification of resistance types       Non-electric parameters         SLO-1       D'Arsonval Galvanometer – construction, working and torque derivation.       Derivation of total power in A.C circuits       Methods of Low resistance measurement – Ammeter Voltmeter. Kelvins Double bridge method, Potentiometer.       Measurement of Pressure         SLO-2       PMMC – construction, working and torque derivation       Measurement of power in D.C. circuits       Methods of Medium resistance measurement       Iow and high pressure         SLO-2       Introduction to Moving iron instruments       Introduction to Electrodynamic wattmeter       Wheatstone bridge method       Nature & its quantities         SLO-2       Introduction to Moving iron instruments       Electrodynamic wattmeter - Construction, working and derivation       Methods of High resistance measurement       Measurement of Temperature         SLO-2       Introduction to Moving iron instruments       Introduction to Electrodynamic wattmeter       Wheatstone bridge method       Nature & its quantities         SLO-2       Repulsion type – construction and working       Errors in Electro

	SLO-2	Construction and Working	Two & One Wattmeter method	problems	Ultrasonic flow transducer, electromagnetic flow meter	Audio recorder
0.7	SLO-1	Introduction to ammeter and voltmeter	Numerical Problems	Methods of Capacitance measurements	Measurement of Humidity	Advantages and Disadvantages
S-7	SLO-2	Extension of ammeter ranges	Introduction to Single phase induction type energy meter	problems	Using Hygrometers	Video Recorder
S-8	SLO-1		xtension of voltmeter ranges Single phase induction type energy meter - Construction, working principle Methods of Mutual inductal		Measurement of Sound	Advantages and Disadvantages
3-0	SLO-2	Calibration of ammeters	Testing of energy meters	Methods of Mutual inductance	l Isina micronnones	Case Study on Plasma, LCD and Led Displays
S-9	SLO-1	Calibration of voltmeter	Phantom loading	Methods of Frequency measurements	Measurement of Level	Case Study on digital voice recorder
3-9	SLO-2	summary	Meter testing circuits	problems	Ultrasonic method, capacitive methods	Summary

	1.	Sawhney, A.K., A Course in Electrical & Electronic Measurements & Instrumentation, Dhanpat Rai and
Learning		Co., 2010
•	2.	Golding. E. W, and Widdis F.C, Electrical Measurements and Measuring Instruments, 5th ed., A.H.
Resources		Wheeler & Company, 2003
	3.	Carr. J.J., Elements of Electronic Instrumentation and Measurement. Pearson Education India, 2011

4. Copper. W.D., Helfrick.. A.D, Modern Electronic Instrumentation and Measurement Technique , 5th ed., Prentice Hall of India, 2002

Bell, A.D., Electronic Instrumentation and Measurements, 2nd ed., Prentice Hall of India, 2003
 Northrop, R.B., Introduction to Instrumentation and Measurements, Taylor & Francis, New Delhi, 2008

Learning As	Learning Assessment													
	Bloom's				Final Examination (50% weight									
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	l (10%)#		r (50% weightage)			
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-			
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-			
Level 3	Evaluate Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-			
	Total 100 %			10	0 %	10	0 %	10	0 %	100 %				

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. D. Karthikeyan, Controlsoft Engineering India Pvt Ltd, karthikeyan.d@controlsoftengg.in	1. Dr. J. Prakash, MIT, Chennai, prakaiit@rediffmail.com	1. Mr.C. Likith Kumar, SRMIST
2. V. Venkateswaran, Instrumentation Consultant, vvenkat99@gmail.com	2. Dr. D. Nedumaran, Madras University, dnmaran@gmail.com	2. Dr. A. Vimala Juliet, SRMIST

Course Code	18ECE182T	Course Name	AU	JTOMOTIVE INSTR	UMENTATION SYSTEMS	Cour Categ		Е		Professional Elective					L 3	T 0	P 0	C 3					
Pre-requisite Courses								ssive ses	Nil														
Course Offe	ring Department	Electro	onics and Communic	ication Engineering	Data Book / Codes/Standards	s Ni	il																
Course Lear	rning Rationale (CL	R): The pu	rpose of learning thi	is course is to:			Lear	ning					Prog	ram L	.earnii	ng O	utcon	nes (F	PLO)				
CLR-1 : Ar	nalyze the basics of	automotive sy	ystems and requiren	ments			1 2	2 3	-	1	2 3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Ut	tilize the principles b	ehind various	s sensors and its app	plication across a ve	hicle										>						1		
CLR-3: Ut	tilize the various elec	ctrical system	ns pertaining to engir	ine			2					arch			Sustainability						1 1	.	
CLR-4 : Ar	nalyze different safet	ty and securit	ty systems					t (%)		dge	ţ	Resea			aina		Work		8		1 1	.	
CLR-5 : Kr	now about the basics	s of automotiv	ve systems and requ	uirements			B 8	len l		wlea		Re l	ge		uste		ž		Finance	p	1 1	.	
CLR-6 : Kr	now about the senso	ors and variou	is systems of autom	notive domain.			Thinking	Attainment (%)		Kno	Analysis	Design, I	Tool Usage	Culture	<b>∞</b> ŏ		Team	ation	& Fi	Leaming	1		
							E B	¥ I		ing		De la	0	Cu	lent		∞ŏ	icati	Mgt.		1	ı	
Course Lear	rning Outcomes (Cl	LO): At the	end of this course, l	learners will be able	to:		Level of 7	Expected		Engineering Knowledge		Analysis,	Modern 7	Society &	Environment	Ethics	Individual	Communic	Project M	Life Long	PSO - 1	PSO-2	PSO - 3
CLO-1: Ar	nalyze the automotiv	e domain and	d electronic systems	s in it				5 80	1		H -	-	Ē	-	-	-	-	-	-	Ħ	H	-	H
CLO-2: Identify the effect of electromagnetic interference						3 8	5 80	1	Н	Η -	L	-	-	-	-	-	-	-	- 1	М	- 1	Н	
CLO-3 : Ide	entify the sensor and	d actuator tec	chnologies involved i	in a car			3 9	0 80		Н	ΗM	1 L	М	-	-	-	-	-	-	Н	Н	Н	-
																				()	-		_

H H M L M

<u>H</u> H M L M H H - - L

3 90 80

 3
 85
 80

 3
 85
 80

------

------

------ H M - H

<u>H</u> M H M H H - H

CLO-2: Identify the energy of electromagnetic interference CLO-3: Identify the sensor and actuator technologies involved in a car CLO-4: Analyze the various electrical systems and electronics involved in it for upgraded operation CLO-5: Analyze new systems on safety, security and body of a car CLO-6: Understand the automotive problems and provide solutions through new system design.

Duration (hour)		9	9	9	9	9
	SLO-1	Introduction to Automotive Electronics	Intake Air Temperature (IAT) Sensor	Starting Systems – Requirements	Tire pressure monitoring systems	Power Windows
S-1	SLO-2	Outline to Automotive Sensors	Engine Coolant Oil Temperature Sensor	Starter Motor – selection and working principle	Capacitive based Pressure Sensor	Smart Window Lift Control Module
S-2	SLO-1	Requirements in Automotive Sensor	Exhaust Gas Recirculation Temperature Sensor	Diagnosing Faults – Symptoms	Anti-lock braking system	Central Locking System
5-2	SLO-2	Open and Closed Loop Control Strategies	Exhaust Gas Temperature Sensor	Testing Procedures	Anti-lock braking system	Power Seat
• •	SLO-1	Shop safety – General safety	Manifold Absolute Pressure (MAP) Sensor	Charging systems – Requirements	Traction Control System	Automatic Wiper systems
S-3	SLO-2	Electrical Safety	High Pressure Fuel Sensor, Engine Oil Pressure Sensor	Components and operation	Adaptive Cruise Control	Electronic Vehicle Immobilizer
S-4	SLO-1	Office Safety	Crankshaft Angular Position Sensor	Diagnosing Faults – Symptoms	Types of Adaptive Cruise Control	Oil Pressure Warning System
3-4	SLO-2	Lifting Procedures	Cam Position Sensor	Testing Procedures	Types of Adaptive Cruise Control	Engine Overheat Warning System
S-5	SLO-1	Electrical wiring, Terminals & Switching	Piston Position Sensor	Ignition systems – Requirements	Parking guide systems	Speed Warning System
3-0	SLO-2	Multiplexed Networking	Throttle Plate Angular Position	Conventional Ignition System	Air Bag System	Door Lock Indicators
	SLO-1	Circuit Diagrams and Symbols	Knock Sensor	Electronic Ignition System	Reversible Seat Belt Pre-tensioner	Gear Neutral Indicator
S-6	SLO-2	Electromagnetic Interference	Oxygen Concentration Sensor	Programmed Ignition System	Electronic Power Steering systems	Anti-Theft Alarm System

	SLO-1	Electromagnetic Compatibility	Vehicle Stabilization System	Brake Actuation Warning System						
S-7	SLO-2	Use of Diagnostic Equipment	Rain Sensor	Direct Spark Ignition System	Venicle Stabilization System	Computer Controlled Air Conditioning Systems				
S-8	SLO-1	Look Up Tables	Acceleration Sensor	Fuel Injection System – Requirements	Collision Avoidance System	On Board Diagnostics				
3-0	SLO-2	Applications	Yaw Rate Sensor	Components and operation	Collision Avoidance System	Roof Control Module				
S-9	SLO-1	Case Study I	Chassis Level Sensor	Types of Fuel Injection System	Case Study II	Case study III				
3-9	SLO-2	-2 Case Study I Fuel Level Sensor Types of Fuel Injection System Case Study II		Case Study II	Case study III					
Learning 1 Tem Depter Automative Electricities (Electronics System and Components 2rd ed. 2004 2 Jack Erioves A Systems Approach to Automative Technology Congress Learning 2000										

Learning Resources

1. Tom Denton, Automotive Electricals / Electronics System and Components, 3rd ed., 2004 2. BOSCH, Automotive Electrics, Automotive Electronics: Systems & Components, BOSCH, 4th ed., 2005. Jack Erjavec, A Systems Approach to Automotive Technology, Cengage Learning, 2009
 Ronald K.Jurgen, Automotive Electronics Reliability, Vol 2, SAE International, 2010

Learning Assess	earning Assessment													
	Bloom's		Final Examination (50% weightage											
	Level of Thinking	CLA – 1	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#		i (50% weightage)			
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember	30 %		30 %		30 %		30 %		30%				
Lever	Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-			
Level 2	Apply	40 %		40 %		40 %		40 %		40%				
Leverz	Analyze	40 70	-	40 70	-	40 70	-	40 70	-	4070	-			
Level 3	Evaluate	30 %		30 %		30 %	_	30 %		30%				
Level 3	Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-			
	Total	100	) %	100	00 % 100 % 100 %				0 %	100 %				

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. D. Karthikeyan, Controlsoft Engineering India Pvt Ltd, karthikeyan.d@controlsoftengg.in	1. Dr. J. Prakash, MIT, Chennai, prakaiit@rediffmail.com	1. Mr. Arockia Vijay Joseph, SRMIST
2. V. Venkateswaran, Instrumentation Consultant, vvenkat99@gmail.com	2. Dr. D. Nedumaran, Madras University, dnmaran@gmail.com	2. Dr. A. Vimala Juliet, SRMIST

Course Code	18ECE183T	Course Name	SAFETY INSTRUMENTED SYSTEM	Course Category		Е	Professional Elective							L 3	T 0	P 0	C 3				
Pre-requ Cours	ses		Co-requisite Courses		ress urse															·	
Course Of	ffering Department	Electro	nics and Communication Engineering Data Book / Codes/Standards	Nil																	
Course Le	earning Rationale (CL	R): The pur	pose of learning this course is to:	Le	arniı	ıg					Progr	am L	earni	ng Oi	utcon	nes (F	PLO)				
CLR-1 :	Know the standard an	d regulation of	SIS design.	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2 : CLR-3 : CLR-4 : CLR-5 : CLR-6 :	Know the Corrective a Know the requirement Know the failure diagn Acquire the knowledg Know the function of s	and Preventive of field device iostic techniqu e on the softwa afety life cycle	e maintenance of SIS. e and the control components. e. are development model and Industrial application of SIS.	evel of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	-SO - 1	2 - 0Sc	- SO - 3
CLO-1 :	Develop, operate and	maintain the s	afety systems.	3	80	75	Ĥ	-	H	-	-	Ĥ	H	H	-	-	-	Ħ	Ĥ	-	-
	Perform the corrective			3	80	70	Н	-	-	Н	-	Н	-	-	-	-	-	Н	-	Н	-
CLO-3 :	Understand the knowl			3	75	70	-	-	-	-	-	Н	-	-	Н	Н	-	-	Н	-	-
	Evaluate the failure dia			3	80	75	-	Н	Н	-	-	-	-	-	-	-	-	-	-	Н	-
	Develop, operate and			3	80	70	-	-	Н	-	Н	-	-	-	-	-	-	Н	-	-	Н
CLO-6 :	gain knowledge on sa	tety lite cycle a	and function of protective layers.	3	80	70	Н	-	Н	-	-	Н	Н	Н	-	-	-	Н	Н	-	-

Duration (hour)		9	9	9	9	9
S-1	SLO-1	Industry Guidelines	Introduction to Safety Instrumentation	Importance of field device	Introduction of failure diagnostic mode	Selection of Technology
5-1	SLO-2	Industry Standards and Regulations.	Hazards & risk	Impact of Field Devices on System Performance.	Equipment Failure mode	Relay systems-PLC based system
	SLO-1	Set of Standards.HSE – PES, AIChE – CCPS,	Process Hazards Analysis (PHA)	Percentage Split of System Failures	Fail –Safe, Fail-danger, Annunciation	Safety PLCs
S-2	SLO-2	IEC 61508, ANSI/ISA, OSHA (29 CFR 1910.119 - Process Safety Management of Highly Hazardous Chemicals)	Safety cycle	Issues relating to field devices. Wiring of Field Devices.	Reliability block diagram. Series system ,Parallel systems, Fault trees, Fault tree symbols	Safety System Complexity
S-3	SLO-1	Technology Choices, Redundancy Choices, Field Devices, Test Intervals.	Shutdown/Interlock/Instrumented Systems (Safety Instrumented Systems – SIS).	Sensors	Comparison of Reliability block diagram and Fault tree	Communication with others system
3-3	SLO-2	Design Lifecycle	Physical Protection	Switches, Transmitters	Fault tree AND gates ,fault tree OR gates	Software development models for safety related system
S-4	SLO-1	Hazard & Risk Analysis- HAZOP analysis	Mitigation Layers	Sensor Diagnostics	Approximation technique	Rapid prototyping, V model
5-4	SLO-2	Allocation of Safety Functions to Protective Layers	Containment Systems	Smart Transmitters	Common mistakes	Water model, spiral model
S-5	SLO-1	Requirements	Scrubbers and Flares	Final Elements	Markov models	Implementation Procedure
3-3	SLO-2	Develop Safety Specification	Fire and Gas (F&G) Systems	Valve Diagnostics	Markov solution technique	case study- Introduction
S-6	SLO-1	SIS Design & Engineering	Evacuation Procedures.	Smart Valve Positioners	Realistic safety instrumented system modeling	The Safety Lifecycle and Its Importance

	SLO-2	Installation , Commissioning	Diversification	Redundancy	Event tree analysis	Case Description: Furnace/Fired Heater Safety Shutdown System
	SLO-1	Validation	Corrective and Preventive maintenance	Voting Schemes and Redundancy	Failure mode and effect analysis	Safety Instrumented system in PLC
S-7	SLO-2	Operations and Maintenance	Types of corrective and preventive maintenance	Design Requirements for Field Devices	Mathematical and statistical basis for risk analysis of technical systems	Safety Instrumented system in oil and gas facilities
S-8	SLO-1	Modifications. Decommissioning.	Mathematical models for performing corrective measures	Operator Interface requirement, Communication Interface requirement	Factory Acceptance Test	Nuclear plant safety discussion
3-0		Process Hazard Analysis (PHA)	SIS Requirement for system behavior on detection of a fault	Final Element Design Requirements,	Spurious trip rate	Safety Instrumented system in DCS
S-9	SLO-1	Failure mode, Effects, and criticality analysis(FMECA), Probability of failure on demand(PFD)	Hardware fault Tolerance	Differences between using certified vs. proven-in-use devices	Risk Assessment	Installation, Commissioning and Pre- startup Tests
	SLO-2	Examples of usage of standards on specific applications.	SIS Integration: Architectural Issues	Circuit measures to increase the reliability	safety integrity levels (SIL)	Operation and Maintenance Procedures
Learn Resoເ	•	International Society of Automation, 2	strumented Systems: Design, Analysis and . 005 ty Instrumented Systems Verifications: Prac	4. B.Š. Dh	Brauer, Safety and Health for Engineers, Jo illon, Maintainability, Maintenance and Reliat Basu, "Plant Hazard analysis and Safety Ins	ility for Engineers, CRC Press, 2006

Learning Assess	ment										
	Bloom's Level of Thinking	Continuous Learning Assessment (50% weightage)								Einal Examination (50% weightage)	
		CLA – 1 (10%)		CLA – 2 (15%)		CLA – 3 (15%)		CLA – 4 (10%)#		Final Examination (50% weightage)	
		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Understand										
Level 2	Apply	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
	Analyze										
Level 3	Evaluate	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Create										
	Total	100 %		100 %		100 %		100 %		100 %	

 Total
 100 %
 100 %

 # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers								
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts						
1. D. Karthikeyan, Controlsoft Engineering India Pvt Ltd, karthikeyan.d@controlsoftengg.in	1. Dr. J. Prakash, MIT, Chennai, prakaiit@rediffmail.com	1. Mrs. K. Vibha, SRMIST						
2. V. Venkateswaran, Instrumentation Consultant, vvenkat99@gmail.com	2. Dr. D. Nedumaran, Madras University, dnmaran@gmail.com	2. Dr. G Joselin Retna Kumar, SRMIST						



## SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Kancheepuram 603203, Tamil Nadu, India